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 Abstract
Parkinson’s disease (PD) is an idiopathic neurodegenerative disorder which has its incidence mainly in elderly 

aged humans. Loss of dopaminergic neurons especially in the substantia nigra, presence of α-synuclein Lewy bodies, 
mitochondrial dysfunction are the main pathological implications that plays pivotal role in both sporadic and familial 
forms of the disease. As PD affects older adults mostly in economically developed countries and worldwide aging 
populations there is an urgent need to develop strategies for the health care of individuals with PD. Epidemiological 
studies help in better understanding of the risk factors for PD and also helps in management of the disease and 
effective planning of medical services. In this present review article current understanding of Pathophysiology, Risk 
factors of PD were presented and the latest therapeutic approaches were discussed.
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Introduction
According to World Health Organization Neurodegenerative 

diseases are the leading cause for death in the elderly, and it predicted that 
by 2040, neurodegenerative diseases will go to second place in overall 
cause for death after cardiovascular diseases [1]. Parkinson’s disease 
(PD) sometimes called “paralysis agitans,” was first recognised in early 
1800’s by the physician after whom the disease is named. Parkinson’s 
disease which is an idiopathic degenerative disease of nervous system 
affects both non-motor and motor system. PD is a progressive chronic 
neurodegenerative disorder mostly affecting older persons but it can 
also occur in younger people. But, PD is highly uncommon in young 
people and its incidence is very less in people under 40 years of age. Men 
are at more risk than women, men are 1.5 times more likely to develop 
PD than women. This difference is slightly varied from based on their 
geographical location for example PD is seen more in people with an 
older age in Western populations than Eastern countries. However, 
further studies are required confirm the ethnic differences in PD risk.

Estimates suggest that PD is expected to rise at an accelerated 
rate over the next 20 years in the aged individuals and continues as 
an important health issue with significant economic drain due to its 
direct and indirect healthcare costs. The economic and psychological 
burden is proved to be highly significant in developed nations where 
the average lifespans of the people are continuously increasing due to 
medical advancements.

Therefore, there is an urgent need in developing effective treatments 
for PD through research in medical and pharmaceutical fields. 

Pathophysiology
Aggregation of alpha synuclein (α-syn)

Investigating the role of the protein alpha synuclein (α-syn) in the 
pathophysiology of Parkinson’s disease (PD) has begun in 1997. For the 
first time scientists found that a missense mutation in α-syn gene causes 
familial PD [2]. In the same year other studies proved that α-syn as one 
of the main components of Lewy bodies [3], which is the important 
neuropathological feature of PD [4]. The aggregation of α-syn causes 
a spectrum of disorders termed as synucleinopathies and a hypothesis 
has been put forward that α-syn aggregation results in toxicity through 

a gain-of-function mechanism. But, some studies proved that the α-syn 
plays an import role in a diverse range of essential cellular processes such 
as response to cellular stress and the regulation of neurotransmission.

α-synuclein immunoreactive protein aggregation in some 
selectively vulnerable neuronal types is crucial for the onset of sporadic 
Parkinson’s disease. The initial misfolding and subsequent aggregation 
of α-syn occurs in the enteric nervous system and/or the olfactory bulb 
which are exposed to potentially hostile environment. Generally these 
inclusions occur in cell somata in the form of spherical Lewy bodies [5-
8], as thread-like Lewy neurites or elongated spindle-shaped. Whereas 
in axons and dendrites [9-12], these develop as pale bodies [13], which 
are granular or dot-like or sometimes in punctate shape aggregates 
[14,15].

Distribution pattern of  α-syn aggregates in the nervous 
system of PD patients

Development of α-syn aggregates generally progresses caudo-
rostrally through lower brainstem regions such as lower raphe nuclei, 
dorsal motor nucleus of the vagal nerve, magnocellular nuclei, locus 
coeruleus then into midbrain tegmental nuclei mainly in the region 
of dopaminergic neurons of the substantia nigra and noncortical 
centres of the forebrain such as amygdala, magnocellular nuclei of the 
hypothalamic tuberomammillary nucleus, basal forebrain, midline and 
intralaminar nuclei of the thalamus. Finally, it reaches to the cerebral 
cortex. [16-22].

Spreading of α-syn along axonal connectivity

Recent studies had proved that the brain regions and nerve cells that 

Parkinson’s Disease (Pathogenesis and Its Management): An Overview
Kumar BNP1, Naresh Korrapati2*, Shabana Kouser Ali3 and Shaik Mohammed Irshad2

1Livestock Research Institute, College of Veterinary Science, SVVU, Hyderabad, India
2Department of Biotechnology, Sri Krishna Devaraya University, Anantapur, India
3Department of BioInformatics, VIT, Tamil Nadu, India



Citation: Kumar BNP, Korrapati N, Ali SK, Irshad SM (2016) Parkinson’s Disease (Pathogenesis and Its Management): An Overview. J Alzheimers Dis 
Parkinsonism 6: 284. doi: 10.4172/2161-0460.1000284

Page 2 of 6

Volume 6   Issue 6 • 1000284
J Alzheimers Dis Parkinsonism, an open access journal
ISSN:2161-0460

become sequentially involved in PD are anatomically interconnected, 
even over long distances, and the physical contacts between nerve cells 
and axonal transport are involved in PD pathogenesis [23-25]. Many 
studies have proved the retrograde axonal transport of α-syn from 
peripheral nervous system to the central nervous system (CNS) [26], 
However the connections between the enteric nervous systems (ENS) 
and CNS by the vagus nerve play major role in the progression of PD 
[27,28]. Recent large-scale epidemiologic analysis of vagotomies that 
were performed to treat peptic ulcers have showed the involvement of 
ENS in the PD [29]. 

Finally, we can conclude that the misfolded and 
aggregated α-synuclein seeds can spread trans-synaptically through 
multisynaptic pathways and can function in a strain-dependent 
manner as self-propagating pathogens in disease progression [30-54]. 
The PD related damage occurs mainly in the superordinate centres of 
the limbic, somatomotor and visceromotor systems.

Cortical atrophy

Cortical atrophy is also one of the primary clinical manifestations 
in patient with PD. Till now three subtypes of cortical atrophies were 
identified in non-demented Parkinson’s disease patients. They are 
frontal and occipital cortical atrophy especially in younger disease 
onset, parieto-temporal atrophy in worse cognitive performance and 
finally in patients without detectable cortical atrophy. These atrophy 
patterns help in identifying the prognosis of the disease. 

Mitochondria Dysfuntion
Mitochondrial dysfunction is associated with PD. Dysfunction 

of mitochondria may be due to mutations in genomic DNA effecting 
Mitochondria or bioenergetic defects or Mitochondrial DNA 
mutations or Morphological and physiological changes affecting the 
dynamics of the mitochondria such as changes in fusion or fission, size 
and morphology, trafficking or transport, movement of mitochondria, 
transcription, and the presence of altered or misfolded proteins. 

Mitochondrial respiration in PD

Mitochondrial respiration alterations are involved in PD. Some 
compounds like Rotenone, trichloroethylene etc., inhibit complex 
I of mitochondria reduces movement of mitochondria, increases 
generation of reactive oxygen species (ROS), resulting in dopaminergic 
neurodegeneration suggesting that mitochondrial dysfunction plays an 
important role in PD [55,56]. In the substantia nigra, in the skeletal 
muscles and platelets the activity of complex I is impaired in PD 
patients [55,57,58]. Recent studies have shown that post translationally 
modified α-synuclein with high affinity binds to translocase of outer 
membrane (TOM20) of mitochondria and inhibits the transport of 
proteins into the mitochondria. This abnormal α-synuclein-TOM20 
interaction was observed in nigrostriatal dopaminergic neurons in the 
post-mortem of brains from PD patients [59]. 

Genetic mutations affecting mitochondria

Generally Parkinson’s disease is well-thought-out as a non-genetic 
disorder where about 15% of entities with PD have a first-degree 
relative having the disease and for remaining 5% of individuals it’s 
because of mutations in some specific genes. Mutations in certain genes 
affecting mitochondrial structure and function are known to play a 
key role in familial PD. DJ-1, α-synuclein, Parkin, LRRK2, NURR1, 
PTEN-induced kinase1 (PINK1), vacuolar protein sorting 35 (VPS35), 
UCHL-1 and HtrA2 have pathogenic mutations which directly or 

indirectly affect mitochondrial normal functions has been observed 
in familial PD [55,60,61]. Juvenile Parkinsonism is mainly caused by 
Parkin which is an autosomal recessive disorder. Parkin gene encodes 
an enzyme E3 which is called as ubiquitin protease ligase. By these it can 
be concluded that mutations in PINK1 and Parkin causes defects in the 
functioning of mitochondria and also mitophagy [62]. Transcriptional 
up-regulation of PARK2 gene in response to damage of mitochondria 
leads to the loss of vacuolar protein sorting 13C (VPS13C) function 
this leads to the early onset of autosomal-recessive Parkinsonism [63]. 

Recent studies have shown that heterozygous mutations in 
glucocerebrocidase (GCase) gene is also frequently found in patients 
with PD [64,65]. Mutations in Leucine-rich repeat kinase 2 gene has a 
major role in monogenic PD in several populations [66,67]. 

Lysosomal dysfunction 

A number of different types of mutations in PARK-genes are 
associated with the mitophagy or autophagy–lysosome pathway 
[68,69]. Lysosomal p-type ATPase13A2/PARK13 [70], alpha-synuclein 
(PARK1, PARK4) are fully or partly degraded by lysosomes [71,72], 
the leucine-rich repeat kinase LRRK2/PARK8 are crucial for the 
maintenance of autophagy–lysosome pathway function [73] and 
lysosomal glucocerebrosidase [74,75]. 

DNA Methylation in PD
Many researchers opined that PD is a consequence of various 

genetic variants along with complex environment–gene interactions 
and age-related changes and presdisposing factors [76]. Recently few 
hypotheses were proposed that the altered DNA methylation also play a 
key role in the pathogenesis of PD.

Jowaed et al. [77] reported DNA methylation in the transcriptionally 
active intron1 of SNCA in PD patients’ brains. Whereas Cai et al. and De 
Mena et al. [78,79] reported that there is no alteration in the methylation 
levels of SNCA gene promoter and Tan et al. [80] found that the methylation 
levels of the leucine-rich repeat kinase 2 was not altered.

Dysregulation of iron metabolism

Recently Brain iron homeostasis recognized as one of the potential 
target in the development of drug therapies for neurodegenerative 
disorders. Actually Iron plays a major role in maintaining normal 
physiological functions in the brain through its participation in key 
cellular functions such as myelin synthesis, mitochondrial respiration 
and neurotransmitter synthesis. But, excess iron causes oxidative 
damage by free radical formation. 

In recent studies a correlation between the accumulation of iron 
in glial cells and neurons of the Substantia Nigra with the severity of 
PD disease is identified [81]. Moreover, iron induces the conversion of 
α-synuclein to the β-sheet from the α-helix conformation which is a 
characteristic of the Lewy bodies present in SN of PD patients [82]. 

Iron chelation efficacy that reduces iron levels in PD has been 
investigated and this prevented toxicity in mouse model of PD [83]. But 
the main difficulty in using iron chelation is caused by the inability of 
large iron chelating molecules such as desferrioxamine in penetrating 
the Blood brain barrier. However relatively low molecular weight 
compounds such as clioquinol has been effective in treating dementia 
and Parkinsonism phenotypes in mouse [84,85]. 

A Risk Associated with Living in Rural Areas
Recent studies have considered the exposure to pesticides, 
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well water use, especially in rural living scenarios as risk factor for 
developing Parkinson’s disease. People having Farming as an occupation 
were significantly associated with PD, but many studies have shown 
that there is no increased risk of PD with rural or farm residence or 
well water use. These observations conclude that Parkinson’s disease 
is linked with occupational exposure to herbicides and insecticides 
and also farming; however the risk of farming cannot be presented by 
pesticide exposure alone.

Symptoms
Motor symptoms

PD is associated with bradykinesia (slow movements), resting 
tremor (initially unilateral), rigidity, postural instability and shuffling 
gait. PD symptoms are progressive and the progressions are highly 
variable. Other symptoms include blurred vision, decreased eye 
blink rate, dystonia, impaired upward gaze, kyphosis, masked facial 
expression (hypomimia), speech impairment, stooped posture, palilalia 
(repetition of word or phrase) or hypophonia (increasingly soft voice), 
etc. Around 25-60% of PD patients experience freezing of movements 
after several years from PD onset [86]. 

Non-motor symptoms

Non-motor symptoms of PD pose greatest challenges to quality 
of PD patient’s life. These include autonomic nervous system failure, 
cognitive changes, neuropsychiatric changes, sensory and sleep 
disturbances. Recent studies have shown that around 90% of PD patients 
have non-motor symptoms during the course of PD. Problems with 
decision-making, memory retrieval, multi-tasking and visuospatial 
perception can also be seen in patient suffering with PD.

Probability of occurrence of hallucinations and Psychosis in 
PD patients is high. The most common psychotic symptom is visual 
hallucinations. Almost forty percent of drug-treated PD patients 
undergo some form of psychosis. All the anti-parkinsonian medications 
are shown to induce some form of psychosis.

Dementia of PD occurs in the later stages but early onset of dementia 
is seen in patients with a family background of PD. Mood disorders 
such as anxiety, depression and apathy also occur in PD patients. 
Mood disorders are the most troublesome non-motor symptoms in 
both the early and late PD patients and anxiety is the most frequent 
psychiatric mood disorder. Abulia (loss of ability to think or act) and 
apathy (loss of motivation) can also occur. Sleep disturbance, frequent 
waking during the night, early morning awakening, Rest tremors and 
sleep attacks. All these symptoms seriously erode quality of life of the 
PD patients. Autonomic disturbances such as constipation, dysphagia, 
fecal incontinence, orthostasis, urinary difficulties, sexual dysfunction, 
nocturia and urge incontinence sialorrhea (excessive salivation) are 
not uncommon in PD patients. PD also alters skin health by affecting 
micro RNAs that regulate protein-coding genes that are involved in 
wound healing and angiogenesis. Olfactory dysfunction and sensory 
symptoms of pain are also found in PD patients. 

Diagnosis
Currently structural and functional neuroimaging studies such 

as 18F-fluorodeoxyglucose-positron emission tomography 18 (FDG-
PET), single-photon emission computed tomography, PET-computed 
tomography and magnetic resonance imaging are being employed in 
clinical diagnosis of neurodegenerative diseases [87]. 

Phosphorylated α-synuclein is associated with abnormal EEG 

wave spectra of brains in PD patients. Hence, in vivo EEG quantitative 
measures can be used as a valid biomarker of cognitive abnormalities 
in PD [88]. Cerebrospinal biomarkers are not yet identified for PD. 
However, in recent studies it was found that there is an increase 
in α-synuclein levels in L1CAM-positive vesicles in plasma of PD 
patients when compared with healthy individuals. Therefore, CNS-
derived extracellular vesicles have the potential to be developed as PD 
biomarkers [89]. Generally α-Synuclein is biochemically measured 
using ELISA or by immunoblots [90]. 

Treatment
Nuclear receptor Nurr1 plays an important role in the development 

of dopamine (DA) in midbrain neurons making the Nurr1 as a target 
for PD. In vitro and in vivo studies shown that Nurr1 gene therapy and 
Nurr1 activating compounds improves DA neurotransmission and 
protects DA neurons from toxic effects of neuroinflammation mediated 
by microglia or environmental toxins [91]. The retromer pathway 
has been emerged as one of the most efficient pathway implicated in 
PD. Deficiency of or mutation of VPS35 leads to the aggregation and 
accumulation of α-synuclein with degeneration of dopaminergic 
neurons and also causes mitochondrial dysfunction. Hence retromer 
pathway is a promising target for PD [92,93]. 

Dimethylfumarate (DMF) and monomethyl fumarate (MMF) 
offers neuroprotection through Nrf2-mediated antioxidant pathway 
and anti-inflammatory [94]. MMF’s neuroprotective effects will not 
involve the inhibition of mitochondrial functions, so oxidative damage 
due to mitochondrial dysfunction which is one of the main causes for 
the pathogenesis of PD can be averted by using MMF hence MMF can 
be used in developing a new therapy for PD.

Targeting synucleinopathies

Targeting of α-syn accumulation, such as its aggregation, synthesis, 
and clearance, can help in disease modification and lowering the 
symptoms and recent approaches focused on α-syn such as active and 
passive immunotherapy [95], degrading enzymes [96], anti-aggregation 
compounds [97], α-syn siRNA delivery [98], autophagy enhancers [99] 
and molecular chaperones [100]. Stimulating neurogenesis [101] and 
Regenerative therapy using stem cells [102] has gained much attention. 

Oral L-dopa therapy

In all the stages of PD and with almost all types of complications 
treatment with L-Dopa is recommended. Uptake of L-Dopa into blood 
from the duodenum and to the brain competes with the uptake of neutral 
amino acids hence L-Dopa preparation should be 1 h before or after a meal.

Dopamine agonists

Dopamine agonists are used mainly in the early stages of PD as 
mono therapy or adjunct therapy (2a) along with L-Dopa therapy in the 
intermediate state of PD and along with L-Dopa (2b) in the advanced 
state PD. Five ergot and five non-ergot-derivates totally ten dopamine 
agonists are available for the treatment of PD. Ergot dopamine agonists 
include α-dihydroergocriptine, bromocriptine, cabergoline, pergolide 
and lisuride and piribedil, pramipexole, ropinirole and rotigotine are 
the non-ergot derivates. The main disadvantage of dopamine agonists 
especially will in the advanced stages of PD which results in the 
accelation of cognitive impairment or dementia, hallucinations.

Deep brain stimulation

Deep brain stimulation (DBS) especially in the subthalamic nucleus 
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(STN), ventral intermediate nucleus (VIM), and globus pallidus pars 
internus (GPi) has been developed especially for the treatment of the 
motor symptoms of PD mainly for tremors at rest which is resistant to 
pharmacotherapy. 

Other compounds

Caffeine: Many studies have shown that Drinking coffee reduces 
the risk of developing PD [103]. Caffeine intake has shown symptomatic 
benefits in PD patients [104]. 

Inosine: Inosine is a precursor molecule of urate and its administration 
leads to increase in serum urate levels. Elevated Urate levels increases 
the antioxidant activity in substantia nigra pars compacta dopaminergic 
neurons and protects against 6-OHDA toxicity [105]. Some studies proved 
that Inosine is safe and triggers urate levels in cerebro spinal fluid and 
serum which decelerates PD progression [106]. 

Nicotine: Epidemiological Studies during the last few decades 
have shown an inverse relation between PD susceptibility and tobacco 
consumption. PD is found to be less prevalent among smokers than 
non-smokers [107]. Nicotine up-regulates anti-apoptotic proteins 
which prevents or slows down the neurodegeneration [108]. Nicotine 
activates the enzymes of the cytochrome P450 family which detoxifys 
neurotoxins [109]. Studies on non-human primates have shown that 
Nicotine protects from toxin-induced nigrostriatal degeneration [110].

Herbs: Many herbs have shown potential in the treatment 
of PD symptoms or to reduce the PD progression. Herbs such as 
Acanthopanax (Eleutherococcus maxim), Alpinia (A. galanga), 
Astragalus, Camellia (C. sinensis), Cassia (Cinnamomum fragrans), 
Chrysanthemum (Chrysanthemum morifolium), Cistanche, Cuscuta 
(Cuscuta L.), Fraxinus (Fraxinus excelsior), Gastrodia (G. elata), 
Ginkgo (Ginkgo biloba), Gynostemma (Gynostemma pentaphyllum), 
Polygonum (Polygonum multiflorum), Pueraria (Pueraria mirifica), 
Rhodiola (Rhodiola rosea), Scutellaria, Tripterygium (Tripterygium 
wilfordii), etc. have potential neuro protective properties.

Currently there is no treatment that could completely cure 
Parkinson’s disease, but very few treatments are available that help 
in relieving the symptoms and maintaining the quality of life. The 
conclusions published in the journal Nature Communications, present 
a better understanding and provide scope for further research towards 
a possible cure or treatment of Parkinson’s disease. Despite of the 
advances in understanding the causes of familial forms of this disease, 
the idiopathic form of Parkinson’s disease which is the most prevalent 
still remains a mystery. 

Conclusion 
PD is one of the most common neurodegenerative diseases mostly 

seen in later ages of life. A combination of environmental and genetic 
factors is responsible for the abnormal protein aggregation in some 
specific group of neurons, leading to their dysfunction and eventually 
death. Genetic factors involving the methylation of DNA affecting 
genes in the function of mitochondria are found to be one of the most 
important causes for the pathogenesis of PD. Identifying biomarkers for 
early detection of PD in humans will undoubtedly improve the early stage 
therapeutics like immunotherapy. However, efforts in the development 
of effective alternative treatments for PD and related neurodisorders 
have increased recently. Logical combination of therapies can be a 
potent approach for treating synucleinopathies. In the next decade 
we can see a rise of personalized medicine for the treatment of PD, 
including familial and sporadic with disease-modifying approaches.
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