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 Abstract
Cerebral microbleeds (MB) and small vessel disease (SVD) with congophilic arterial angiopathy (CAA) are 

increasingly recognized as a variable factor in AD cognitive impairments. This commentary on our recent report on 
sex-ApoE interactions in MBs published this February, briefly explores three aspects of MBs that could not be fully 
discussed therein: I, A possible gap between the prevalence of MBs as detected by MRI and post mortem analysis; 
II, The role of hemoglobin- degradation products in amyloid-attributed neurodegenerative changes; and III, Possible 
assessment of MB by cerebrospinal fluid (CSF) assays for iron-related markers to better screen patient subgroups 
for AD interventions.
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Cerebral microbleeds (MB) have increasing clinical interest because 
of their association with AD and with small vessel disease (SVD) [1-3]. 
Most convincing to us is the population-based Rotterdam Study, just 
published in August 2016. In this 6 year follow-up of 3257 clinically 
normal participants imaged with 1.5T MRI, those with one or more 
MBs had a 2-fold higher risk of clinical grade dementia; of all AD 
cases, about 50% had MBs [4]. The prevalence of MBs was about 10% 
in this total sample of average age 60 years, which is higher than the 
5% prevalence of other similarly aged “general populations” in a meta-
analysis [5]. Moreover, a brief comparison with other studies (Table 
1) shows that the typical MRI strength of 1.5-3T may underestimate 
MB prevalence by >3-fold, as shown in exploratory studies by higher 
strength 7T MRI [6] and by postmortem histochemical analysis for iron 
deposits [7] (Table 2). The 7.5T MRI is not practical for most clinical 
studies because the prolonged scan times may induce claustrophobia. 
The MB numbers from postmortem 7.5T MRI of brain sections showed 
strong correspondence with MBs detected by iron histochemistry [7]. 
Mice are also shown in Table 3. Wild type C57BL/6 mice had very low 
levels at age 6 month that are strikingly increased by the introduction of 
human ApoE transgenes, and further boosted by FAD genes in EFAD 
mice [1]. 

The detection of MBs by Perls Prussian blue histochemistry 
represents extravasated heme ferric iron in ferritin and hemosiderin 
complexes. Intriguingly, heme and Aβ are colocalized at sites of 
extravasation in humans [8] and in ADtg mice transgene [1,9]. 
Of potential relevance to mechanisms in neurodegeneration, are 
interactions of the heme core with the human Aβ peptide (hAβ), which 
generates increased peroxidase activity with a broad range of substrates 
[10,11]. Importantly, hAβ has higher affinity for the heme core than 
rodent Aβ [11,12] due to specific amino acid differences (Arg5, Tyr10 
and His13) in hAβ which differ critically from rodent Aβ (mouse or 
rat). We ask: could hAβ-attributed neurodegenerative changes in ADtg 
mice also represent promiscuous biochemical effects of the heme-
hAβ complex that generate the oxidized proteins and lipids found in 
amyloid deposits? Heme-hAβ peroxidase bystander damage might be 
further studied with other knockouts and specific antioxidants. 

Besides MBs, mice transgenic for human ApoE3 or E4, but with 
wild type rodent APP, have age-related gross cerebral hemorrhages and 
cerebrovascular amyloid fibrils that are absent from aging C57BL/6 

mice [13]. Because wild type rodent Aβ fibrillizes in vitro, yielding with 
equivalent Thioflavin fluorescence to hAβ [11], we need to consider 
other wildtype strains besides the C57BL/6 for spontaneous CAA and 
hemorrhages with aging. 

Sex interactions merit further consideration. Cacciottolo et al. [1] 
and Vest and Pike [14] found that female AD mice have greater Aβ 
load than males. Because the greater accumulation of MBs [1] in female 
EFAD mice parallels their greater Aβ load and CAA, it seems important 
to resolve the independent vs. cooperative effects of Aβ and MBs, which 
could have shared or distinct pathways for AD-like neurodegenerative 
changes and cognitive decline. 

In vivo detection of MBs currently depends on MRI. We ask: 
could there be a CSF marker related to extravasated iron in the 
brain? In subarachnoid hemorrhage (SAH), CSF ferritin levels were 
elevated >50-fold, attributed to intra-thecal production by microglia 
[15]. Hemopexin, another iron binding protein, was also elevated in 
about one-third of SAH patients [16]. Bilirubin, a heme degradation 
product, used as a CSF marker after SAH [17], was also elevated in AD 
patients by ~20% [18]. Intriguingly, in a 7 year longitudinal study of the 
ADNI cohort, CSF ferritin varied inversely with cognitive decline and 
predicted MCI conversion to AD [19]. 

Thus, CSF levels of bilirubin, ferritin, and hemopexin should 
be further analyzed in the extensive banks of CSF being collected in 
relation to MRI studies of older populations. Additionally, we suggest 
the study of CSF iron. Although serum iron, but not CSF-iron, was 
decreased in AD vs. healthy controls [20], a more comprehensive 
analysis of iron is warranted for serum and CSF in human samples; and 
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additionally in rodents, for iron in brain interstitial fluid. Further post 
mortem correlations are also warranted for CSF iron markers with brain 
MBs and CAA, and for brain region total iron which is also increased 
in some AD-vulnerable regions [20]. These assays could be paired with 
MRI for the early identification of MBs, paralleling the CSF-Aβ42 and 
PET imaging for in vivo amyloid [21]. 

We anticipate that inclusion of hematogenous parameters will add 
new iron-dependent mechanisms to the standard AD progression 
models based on amyloid and tau fibril accumulation [22]. The 
neurodegenerative mechanisms of amyloid may prove to involve 
downstream effects of Aβ-heme complexes as well as direct effects of 
oligomeric Aβ. In those AD patients with MB, CSF levels of Aβ42 were 
decreased [23,24], while non-AD subjects with MB showed increased 

tau [23]. If CSF- heme complexes or ferritin were found to precede the 
CSF-Aβ decline during AD [21], this could give a valuable pre-clinical 
marker for adjusting anti-coagulant dose and other therapeutics. Given 
findings from the Rotterdam Study that MBs are associated with higher 
AD risk and from ADNI that CSF ferritin increases MCI conversion, we 
suggest that MBs be given greater attention in the selection of patients for 
clinical trials. Lastly, we note the conclusion of a just published review: 
“it must not be assumed that a primary hemorrhagic process produces all 
microbleeds or that the most severely affected vessels are the culprits” [25].
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Study [Reference] Study
(# participants)

Age, years; 
median (IQR)
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ADNI: Alzheimer Disease Neuroimaging Initiative; KIDS: Karolinska Imaging Dementia Study; MCI: Mild Cognitive Impairment; AD: Alzheimer Disease; VsD: Vascular 
Dementia

Table 1: Frequency of microbleeds in clinical studies.

Study 
[Reference]

Population (# 
participants)

MRI strength 
(T) # MBs % population 

with MB

Cacciottolo et 
al. [1]

ADNI (658) 1.5/3T
1 20

2-4 8
>4 4

KIDS (488) 1.5/3T
1 8

2-4 2
>4 5

Akoudad et 
al. [4]

Rotterdam Study 
(3257) 1.5T

1 12
2-4 4
>4 2

Ni et al. [6] unspecified (8)

1.5/3T
1 12.5

2-10 50
>10 12.5

7T
1 12.5

2-10 12.5
>10 50

Table 2: Comparison of MB detection by MRI field strength.

Genotype Microbleeds per 100 mm2 of cerebral 
cortex (mean ± SD)

Wild type C57BL/6 0.6 ± 0.7
hApoE [1] 1.4 ± 1.37
EFAD [1] 22.6 ± 38.8

Number of microbleeds per 100 mm2 of cerebral cortex identified by Perls Prussian 
Blue histochemistry on sagittal brain slices 25 µm thick. Both sexes: Wild type, 12 
mice (independent analysis, not reported in [1]); hApoE (human ApoE): 16 mice; 
EFAD: 19 mice

Table 3: Mouse MB studies.
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