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Introduction
There are several types of neurodegenerative disease; however, 

this commentary focuses on Alzhemier’s disease (AD), Parkinson’s 
disease (PD), Huntington’s disease (HD) and post-traumatic stress 
disorders (PTSDs). Despite extensive research during past decades 
on the biochemical and genetic defects in these diseases, there are no 
effective preventive strategies except for modifications in the diet and 
lifestyle; and treatment approaches are unsatisfactory. Nevertheless, 
several biochemical and genetic abnormalities were identified and 
reviewed [1-5]. For example, cellular and genetic defects in AD include: 
(a) enhanced production free radicals, (b) persistence inflammation, 
(c) abnormal mitochondrial function, (d) (e) cholesterol levels, (f) 
increased production of Aß1-42 peptides generated from the amyloid 
precursor protein (APP) and (g) up regulation and down regulation of 
microRNAs, (h) inhibition of proteasome activity, and (i) mutations 
in genes, such as APP, presenilin-1 and presenilin-2 [1,2]. In PD, 
biochemical and genetic abnormalities include increased oxidative 
damage, persistent inflammation, mitochondrial dysfunction, and 
glutamate level. Mutation in DJ-1, alpha-synuclein, PINK-1 or 
PARKIN gene associated with familial PD impairs mitochondrial 
function that can increase oxidative stress [3]. HD is an autosomal 
dominant heritable neurodegenerative disease characterized by an 
expansion of more than 35 repeats of the nucleotide triplet cytosine- 
adenine-guanosine (CAG) that codes for the amino acid glutamine 
in the huntingtin protein. Biochemical abnormalities in HD and 
PTSD include increased production of free radicals, mitochondrial 
dysfunction, persistence inflammation, and glutamate level [4,5].The 

studies discussed in these reviews suggested that increased oxidative 
stress precedes other abnormalities. Oxidative damage, if not repaired, 
induces chronic inflammation that produces pro-inflammatory 
cytokines, additional free radicals, complement proteins and adhesion 
molecules all of which are neurotoxic. Thus, increased oxidative 
stress and chronic inflammation initiate the development of these 
neurological diseases. These reviews also revealed that excess release 
of glutamate occurred earlier in HD and PTSD than in AD and PD. 
Transcranial magnetic stimulation (TMS) technique have identified 
cortical hyper excitability in patients with AD [6], mild cognitive 
impairment [7], vascular dementia [8] and obstructive sleep apnea 
syndrome, restless legs syndrome, insomnia, and sleep deprivation  [9]. 
Cortical hyper excitability could be due to release of excess glutamate. 
Increased glutamate levels together with excess free radicals and pro-
inflammatory cytokines participate in the progression of these diseases. 
Thus, increased oxidative damage, pro-inflammatory cytokines and 
glutamate level are common biochemical defects in these neurological 
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diseases. This commentary suggests that simultaneous reduction of 
these biochemical defects may prevent and together with standard 
therapy, enhance the treatment of these neurodegenerative diseases.

The central question is how to simultaneously attenuate oxidative 
damage, chronic inflammation, and glutamate level. Previous studies 
using primarily single antioxidants in AD [1,2], PD [3], HD and PTSD 
level [4,5] have yielded variables results ranging transient benefits in 
the early disease phase to no effect. One of the reasons could be that 
supplemented single antioxidant does not simultaneously decrease 
all three biochemical defects. Furthermore, it is known that a single 
antioxidant is oxidized in the presence of a high oxidative environment 
of patients with these diseases, and then behaves as a pro-oxidant 
that could be neurotoxic. In order to avoid these problems, this 
commentary suggests that it is essential to increase simultaneously 
the cellular levels of cytoprotective enzymes including antioxidant 
enzymes, and antioxidant compounds derived from the diet and 
endogenously made in order to maximally reduce oxidative stress and 
chronic inflammation. Certain B-vitamins prevented the release of 
glutamate [10,11] and certain antioxidants [12-14] reduced the release 
and toxicity of glutamate. The cellular levels of antioxidant compounds 
and B-vitamins can be enhanced by an appropriate supplementation; 
however, increasing the cellular levels of antioxidant enzymes requires 
an activation of a nuclear transcriptional factor Nrf2.

Methods of Activation of Nrf2
Since increasing the cellular levels of antioxidant enzymes and 

other cytoprotective enzymes needs an activation of Nrf2, this nuclear 
transcriptional factor is briefly described. The Nrf2 (nuclear factor-
erythroid-2- related factor 2) belongs to the Cap ´N´Collar (CNC) 
family that has a conserved basic leucine zipper (bZIP) transcriptional 
factor. Under normal physiological conditions, Nrf2 is bound to 
Kelch-like ECH protein 1 (Keap1) which is considered as an inhibitor 
of Nrf2 [15]. Keap1 protein acts as an adaptor to connect Nrf2 to the 
ubiquitin ligase CuI-Rbx1 complex in order to be degraded by the 
enzymes proteasomes. This allows maintenance of the steady levels of 
Nrf2 in the cytoplasm.  Nrf2-keap1 complex is primarily located in the 
cytoplasm. Keap1 behaves as a sensor for ROS/electrophilic stress that 
causes dissociation of Nrf2 from the Keap1 protein in the cytoplasm. 

Activation of Nrf2 requiring ROS-stimulation
Under normal conditions, excessive production of free radicals occurs 

during aerobic exercise. To protect against oxidative damage, ROS activates 
Nrf2 which then separate itself from the Keap1- CuI-Rbx1 complex and 
migrates to the nucleus where it heterodimerizes with a small Maf protein. 
The binding of Nrf2 with the ARE causes increased transcription of target 
genes coding for cytoprotective enzymes including antioxidant enzymes 
[16-19]. Thus, in response of acute oxidative stress, Nrf2 is activated by 
ROS to protect the neurons from oxidative damage. 

Binding of Nrf2 with antioxidant response element (ARE)
Activation of Nrf2 by ROS alone may not be enough to enhance 

the cellular levels of antioxidant enzymes. Activated Nrf2 must bind 
with the ARE in the nucleus for increasing the transcription of its target 
genes coding for cytoprotective enzymes. It has been reported that the 
binding ability of Nrf2 with ARE was impaired in aged rats; however, 
supplementation with alpha-lipoic acid restored the binding ability of 
Nrf2 with ARE [20].

Activation of Nrf2 not requiring ROS-stimulation

Activation of Nrf2 by ROS-stimulation becomes impaired during 
chronic oxidative stress found in patients with neurodegenerative 

diseases [21-23].This is supported by the fact that increased oxidative 
damage occurs in neurodegenerative diseases despite the presence of 
Nrf2.

Genetic and Epigenetic Regulation of the Levels and 
Activity of Nrf2

Keap1 regulates the cellular levels of Nrf2 by maintaining its 
degradation by the enzymes proteasomes, whereas Nrf2 controls 
the cellular levels of Keap1 by regulating its transcription [24]. A 
multifunctional stress response gene, immediate early response-3 
(IER-3) gene also controls the activity of Nrf2. Silencing of IER-3 gene 
enhances Nrf2 activity, whereas increased expression of IER-3 reduces 
it [25]. The cellular levels of Nrf2 are controlled epigenetically by 
methylation of CpG (cytosine-phosphate-guanosine) and acetylation 
of histone3. Hypermethylation of CpG and hyperacetylation of 
histone3 enhance the transcription of Nrf2, whereas hypomethylation 
of CpG and hypoacetylation of histone3 reduce it [26]. 

MicoRNAs Regulating the Activation of Nrf2
Although changes in the expression of microRNAs are being 

investigated in neurodegenerative diseases, this section focuses on the 
functions of microRNAs in regulating Nrf2 activation. MicroRNAs 
(miRs) are evolutionarily conserved small non-coding single-stranded 
RNAs of about 22 nucleotides in length, and are present in all living 
organisms including humans [27-30]. Each microRNA binds to its 
complimentary sequences in the 3’- untranslated region (3’-UTR) 
of the target mRNA that prevents the formation of its protein. Thus, 
microRNAs play a key role in regulating cell function.  It appears that 
specific microRNAs may regulate the activation of Nrf2 by decreasing 
the levels of Keap1. The complex of Keap1-Nrf2 in the cytoplasm 
prevents activation of Nrf2. Overexpression of miR-200a reduced 
Keap-1 levels in the cells allowing Nrf2 to migrate to the nucleus where 
it binds to the ARE that enhanced the expression of target genes coding 
for cytoprotective enzymes including antioxidant enzymes [31].

Antioxidant Compounds Regulating Activation of Nrf2
During persistence oxidative stress, activation of Nrf2 becomes 

resistant to ROS-stimulation. Antioxidant compounds activate Nrf2 
without requiring stimulation by ROS. Some of them are listed here.

Antioxidant compounds activate Nrf2 without requiring 
ROS-stimulation

Some of them include vitamin E and genistein [32], alpha-lipoic 
acid [20], curcumin [33], resveratrol [34,35], omega-3-fatty acids, 
astaxanthin [36,37], glutathione [38], NAC [39], coenzyme Q10 [40] 
and several plant-derived phytochemicals with antioxidant activities, 
such as epigallocatechin-3-gallate, carestol, kahweol, cinnamonyl-
based compounds, zerumbone, lycopene and carnosol [41,42] 
genistein, allicin, a major organosulfur compound found in garlic 
[43], genistein [32], sulforaphane, a organosulfur compound, found in 
cruciferous vegetables [44] and kavalactones (methysticin, kavain and 
yangonin) [45]. 

L-carnitine-induced activation of Nrf2 requiring ROS-
stimulation

Treatment of cells with L-carnitine activates Nrf2 that requires 
ROS-stimulation [46]. This could be due to the fact that L-carntine 
treatment may generate transient ROS.
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Reducing Oxidative Stress Levels
Activation of Nrf2 may not be sufficient to optimally reduce 

oxidative stress, because antioxidants compounds are also decreased 
during chronic oxidative stress [47-49]; therefore, their levels must also 
be simultaneously elevated. 

Reducing Inflammation levels 

Activation of Nrf2 [50,51] and some individual antioxidant 
compounds reduced chronic inflammation [52-58]. 

Reducing glutamate levels 

Some antioxidants decrease the release of glutamate as well as its 
neurotoxicity [12-14]. In addition, certain B-vitamins can also decrease 
the release of glutamate [10,11]. 

Proposed Micronutrients for Reducing the Risk of 
Developing Neurodegenerative Diseases

Because of failure to produce consistent benefits by individual 
micronutrients in prevention or improved management of 
neurodegenerative diseases, and because a single antioxidant cannot 
simultaneously decrease oxidative stress and chronic inflammation, 
a comprehensive micronutrient mixture is proposed. This mixture of 
micronutrients has multiple dietary antioxidant compounds (vitamin A, 
natural mixed carotenoids, vitamin C, vitamin D, vitamin E, curcumin, 
resveratrol), endogenous antioxidants (alpha-lipoic acid, L-carnitine, and 
coenzyme Q10) and a synthetic antioxidant N-acetylcysteine (NAC), 
omega-3-fatty acids and all B-vitamins. This micronutrient mixture may 
maximally decrease oxidative damage and persistence inflammation 
by simultaneously increasing the cellular levels of antioxidant enzymes 
through activation of the Nrf2/ARE pathway, and elevating the levels of 
antioxidant compounds. The same micronutrient mixture may also reduce 
the release and the toxicity of glutamate. 

Prevention of Neurodegenerative Diseases

Primary prevention
The major focus of primary prevention is to protect healthy 

individuals from developing neurological diseases. Individual of 65 
years or older, and those carrying specific gene mutation who have 
no symptoms of the disease are suitable subjects for the primary 
prevention study. At present, there are no strategies to prevent or 
delay the appearance of the symptoms of the disease in individuals 
carrying mutated genes. The proposed micronutrient mixture may be 
effective in preventing or delaying the appearance of the symptoms of 
neurodegenerative diseases in these individuals. This possibility was 
indirectly supported by an experiment on the fruit flies described here.

The gene HOP (TUM-1) is essential for the development of 
Drosophila melanogaster (fruit fly). A mutation in this gene markedly 
increases the risk of developing a leukemia-like tumor in female flies. 
In collaboration with Dr. Bhattacharya of NASA Moffat Field, CA, 
we observed that whole-body irradiation of these flies with proton 
radiation dramatically increased the incidence of cancer compared to 
that observed in un-irradiated female flies. Treatment with a mixture of 
multiple antioxidants before and after irradiation blocked the incidence 
of proton radiation-induced cancer in female fruit flies [59].

Secondary prevention

The major focus of secondary prevention is to prevent or slow the 
rate of the progression of neurodegenerative disease after exposure to 

agents that enhance the risk of the disease. Individuals who have been 
exposed to such agents, but have not developed any symptoms of the 
disease, and are not taking any medication, are suitable subjects for 
the secondary prevention study. The micronutrient mixture suggested 
for the primary prevention study is also proposed for the secondary 
prevention study. 

Proposed micronutrient strategy in combination with 
standard care

The patients with neurodegenerative disease who are receiving 
standard care are suitable for this study. The micronutrient mixture 
suggested for the primary prevention study is also proposed together 
with standard therapy for the treatment study. 

Conclusion
Published studies suggest that increased production of free 

radicals, persistent inflammation and glutamate level are important 
in the development and progression of all neurodegenerative diseases 
discussed in this commentary. Some antioxidant compounds may 
activate ROS-independent Nrf2, but this may not be enough to 
maximally decrease oxidative damage, persistent inflammation and 
glutamate release. This could be due to the fact that the cellular levels 
of antioxidant compounds derived from the diet and endogenously 
made are also depleted in the environment of high oxidation found 
in patients with neurodegenerative disease. Their cellular levels must 
also be simultaneously increased.  The proposed micronutrient mixture 
may maximally decrease oxidative damage and chronic inflammation 
by simultaneously increasing the cellular levels of antioxidant enzymes 
through activating the Nrf2/ARE pathway, and antioxidant compounds 
derived from the diet and endogenously made. Such a micronutrient 
mixture may also reduce the release and toxicity of glutamate. The 
efficacy of this mixture of micronutrients should be tested in the 
primary prevention, secondary prevention, as well as together with 
standard care, in the treatment of neurodegenerative diseases. 
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