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Introduction
Pregnancy has been described as a state of oxidative stress due to 

increased metabolic activity of the placenta and decreased antioxidant 
capacity during normal pregnancy [1]. Rapidly dividing placental cells 
produce large amounts of Reactive Oxygen Species (ROS), including 
superoxide anion, as a byproduct of aerobic respiration by complexes 
I and III of the mitochondrial electron transport chain [2]. NAD(P)H 
oxidase (Nox) is the other main source of superoxide anion generation 
in the placenta and is expressed in the cell membrane of the syncytial 
layer, the vascular endothelium, and maternal granulocytes found at the 
maternal-fetal interface [3,4]. Collectively, these observations suggest 
that normal pregnancy is a state close to the limit at which oxidative 
stress may become pathological. Decreased antioxidant capacity and 
increased ROS are associated with placental dysfunction resulting in 
preeclampsia, intrauterine fetal hypoxia and growth restriction, and 
stillbirth [1-3,5-7].

Oxidative stress markers such as levels of plasma lipid peroxidation 
and urinary F2 isoprostanes are known to be increased in obese, non-
pregnant women [8,9]. However, the relationship between maternal 
obesity and placental oxidative stress is unclear. Maternal obesity 
is associated with placental dysfunction, characterized clinically by 
preeclampsia, second trimester spontaneous abortion, and stillbirth, 
in a dose-dependent fashion with body mass index (BMI) [10-15]. 
More than 1 in 3 women in the United States are obese at the time of 
conception, defined as a BMI equal to or greater than 30 kg/m2[16]. 
Thus, there is a broad interest among public health experts, physicians, 
and researchers in elucidating mechanistically based interventions to 
reduce the impact of maternal obesity on pregnancy outcome. The 
aim of this study was to determine the effect of maternal obesity on 
placental oxidative stress in the first trimester.

Methods
Subjects

Obese (BMI ≥ 30) and lean (18.5 ≤ BMI <35) patients undergoing 

voluntary surgical abortion were recruited from a single reproductive 
services clinic in this IRB approved study. Inclusion criteria included a 
gestational age between 8(0/7) and 13(6/7) weeks and signed informed 
consent. Exclusion criteria included co-existing diabetes mellitus, renal 
disease, and use of antibiotics in the previous 6 weeks, use of any non-
steroidal anti-inflammatory drug in the previous 24 hours, use of oral 
or systemic steroids, or recent (<6 weeks) pelvic inflammatory disease. 
BMI was determined by height and weight measured immediately 
prior to the procedure. Obese subjects were enrolled consecutively, 
and a matched lean controls was subsequently enrolled for each obese 
subject. Matching was 1:1 by race/ethnicity, smoking status (yes/no 
in pregnancy), and gestational age (± 3 d). All gestational ages were 
confirmed by measurement of the crown-rump-length with ultrasound 
prior to the procedure.

Blood and placenta collection

Blood samples were obtained at the time of intravenous access 
and prior to initiation of the procedure. Blood samples were placed on 
ice and allowed to clot for at least 30 minutes. Immediately following 
dilation and curettage, products of conception were floated in ice-cold 
phosphate buffered saline (PBS, pH 7.4). Placenta was identified by the 
consistent frond-like appearance of villi (Figure 1). Placental specimens 
were washed with ice-cold PBS then flash-frozen in liquid nitrogen. 
The entire tissue collection process was completed in less than 20 
minutes after dilation and curettage in all cases. Placental specimens 
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were stored at -80° C until batched testing. Clotted blood samples were 
centrifuged at 4,000 rpm for 20 minutes at 4° C and serum fractions 
were kept for analyses.

Sample Preparation

Frozen placental samples were manually homogenized in 
lysis buffer containing 50 mMTris-HCl (pH 7.5), 2mM Ethylene 
Diaminetetraacetic Acid (EDTA), 2mM Ethylene Glycol Tetraacetic 
Acid (EGTA), 1% Triton X-100, 150 mMNaCl, 10 glycerol, and diluted 
1:100 with Phenyl Methyl Sulfonyl Fluoride (PMSF). The lysis buffer 
was supplemented with a proteinase inhibitor cocktail containing 
4-(2-amnioethyl) benzenesulfonyl fluoride (AEBSF), pepstatinA, E-64, 
bestatin, leupeptin, and aprotinin (Sigma-Aldrich, St. Louis, MO). 
Samples were incubated in the lysis buffer with periodic vortexing at 
40C for 15 minutes. The incubated samples were then centrifuged at 
15,000 rpm for 15 minutes to precipitate non-soluble material. The 
supernatant was collected and passed through a Biospin-6 (Bio-Rad 
Laboratories, Inc., Hercules, CA) size-exclusion chromatography 
mini-column and the protein concentration was determined using 
the Bradford Assay (Bio-Rad Laboratories, In., Hercules, CA). The 
resultant filtrate was diluted 1:100 with 20 mM PBS. 

Fluorescent detection of oxidative stress

Oxidative stress was assessed through the measurement of 
reduced protein thiol content using the sulfhydryl-specific maleimide 
fluorescent dye, ThioGlo-1 (Calbiochem Inc., San Diego, CA) as 
previously described [17-18]. The total reduced protein thiol content 
is the reciprocal of the total oxidized protein content. The fluorescent 
emission of ThioGlo-1-protein sulfhydryl adducts, therefore, is an 
accurate measure of the global protein redox status [19]. Freshly 
prepared placental homogenates and thawed serum were analyzed 
using real-time kinetics mode of a QM-4 fluorometer (Photon 
Technology International, Inc., Piscatway, NJ; Figure 2). Saturation 
ThioGlo-1 fluorescence was normalized for the total protein content 
of each sample.

Statistical Analysis

Continuous data were described as medians (IQR), and categorical 
data were described by frequencies (column percents). The primary 
outcome was ThioGlo-1 emission, normalized for protein content 
(counts/sec/µg protein). Group comparisons between obese and 
lean women were performed using Wilcoxon rank sum tests or Chi-
square tests as appropriate. Linear relationships between placental and 
serum ThioGlo-1 emission and between gestational age and ThioGlo-1 
emission were assessed by Spearman rank correlation coefficients. 
P-values <0.05 were considered statistically significant for all tests (SAS 
9.1.3 (Cary, NC)).

Results
A total of 44 subjects (22 matched pairs) were enrolled. There 

were no differences in background or demographic variables (Table 
1). Maternal obesity was associated with a 31% median increase in 
placental oxidative stress compared to lean controls (Figure 3a). Thirty-
two subjects (16 in each group) also had serum available for peripheral 
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Figure 1: Separation of gestational tissues and collection of placenta.
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Figure 2: Original representative traces of TG-1(5 µM) fluorescent detection 
of protein-sulfhydryl in glutathione-free samples of placenta homogenate or 
plasma in 20 mm PBS, pH=7.4 at 37°C.
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Figure 3a: First trimester ThioGlo-1 emission (513 nm) in obese compared to 
lean women. The top and bottom bars represent the full range of observations. 
placental homogenates (n=44, medians [IQR]=203.7 [189-234] and 141.1 
[117-156] for normal weight and obese subjects, respectively, p<0.001).

Background Characteristics and Placental Oxidative Stress
Variable Obese (n=22) Lean (n=22) p-value
Age (y) 22.5 (21-26) 21.5 (20-25) .45
Gestational age (wk) 9.4 (9-10) 9.4 (9-10) .82
BMI 35.0 (34-38) 22.0 (21-23) <.001
Gravidity 2.0 (1-3) 1.5 (1-3) .36
Parity 1.0 (0-2) 0.0 (0-1) .06
Race/Ethnicity
White 8 (31.8%) 8 (31.8%)

1.0
Black 14 (63.2%) 14 (63.2%)
Smoking 3 (13.6%) 3 (13.6%) 1.0
Chronic hypertension 1 (5%) 0 (0%) 1.0

Table 1: Continuous variables presented as medians and interquartile range (IQR) 
and analyzed by Wilcoxon rank sum tests.  Categorical variable presented as 
frequencies and column percents and analyzed by Chi-square tests.
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oxidative stress assessment. A similar, but non-significant increase in 
serum oxidative stress was found (Figure 3b). There was no significant 
correlation between placental and serum oxidative stress either within 
groups (obese r=-0.11, p=0.67; lean r=-0.06, p=0.83) or overall (r=0.25, 
p=0.17, Figure 4a). There was also no correlation between gestational 
age and placental (r=-0.16, p=0.28) or serum (r=0.26, p=0.14) oxidative 
stress (Figure 4b). Overall, the level of oxidative stress measured in the 
placenta was far more pronounced than in the serum (Figure 3a, Figure 
3b).

Discussion
Maternal obesity is an emerging public health concern of enormous 

clinical impact and research interest. Our data shows for the first time 
that maternal obesity is associated with placental oxidative stress in 
the first trimester. This finding supports a first trimester origin for 
the observed increased rate of placental dysfunction noted in obese 
women later in pregnancy, although a direct relationship cannot 
be established from this investigation [10-15]. Oxidative stress is 
increasingly viewed as an upstream process resulting in inflammation 
and cellular injury. Indeed, maternal obesity is associated with robust 
placental inflammation at term Challier et al. [20] demonstrated that 
mRNA expression of TNF-α and other pro-inflammatory cytokines are 
elevated in placentas of obese women compared to lean women at term 
[20]. These investigators found that an accumulation of activated CD14+ 
macrophages in the placenta was considered the primary source for 
these pro-inflammatory cytokines [20]. Other investigators have found 
that placental mitochondrial ROS production is stimulated by TNF-α 
[21]. Therefore, increased obesity-related placental inflammatory 
cytokines may promote further production of ROS and induce a feed 
forward cycle of placental cellular damage [22].

Our finding that global placental redox status in obese women is 
independent of gestational age was surprising. A common belief is 
that placental oxidative stress occurs only after 10 weeks of gestation, 
based on the observation that only after this time point does the fetal 
circulation come into direct contact with the uterine spiral arteries 
and the intervillous oxygen tension rises sharply (pO2=50 mmHg) 

[23,24]. Prior to this period, the fetal environment is very hypoxic 
(pO2<20 mmHg) [24].The reason for independence of oxidative 
stress for gestational age in obese women is unclear. There are two 
potential explanations for this phenomenon. The first is hypoxia-
induced production of ROS from the placental mitochondrial electron 
transport chain [2]. The second involves a priori increased NADPH 
oxidase activity in the placenta of obese women. In fact, NADPH 
oxidase appears to be the major contributor of ROS production in 
non-pregnant obese women [8,25,26]. Our findings differ from those 
earlier reported by Roberts et al. [27] who found no direct relationship 
between lean, overweight, and obese BMI classes and oxidative stress 
[27]. The disagreement between our two studies most likely reflect 
that their study: 1) was limited to term gestations without pregnancy 
complications; 2) contained a very limited number of subjects (7 
lean, 5 overweight, and 8 obese), which may have limited the power 
to detect increases in oxidative stress; 3) used quasi-quantifiable 
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Figure 3b: Serum (n=32, medians=13.6 [12-23] and 12.2 [9-15] for normal 
weight and obese subjects, respectively, p=0.09).
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Figure 4a: Relationships between placental oxidative stress and peripheral 
oxidative stress and gestational age. Spearman-rank correlation between 
placental ThioGlo-1 emission (513 nm) and serum ThioGlo-1 emission (513 
nm) (n=32, p=0.17).
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Figure 4b: Spearman-rank correlation between placental ThioGlo-1 emission 
(513 nm) and gestational age (n=44, overall p=0.26).
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methods, such as western blot, to measure placental oxidative stress; 
and 4) recruited both laboring and non-laboring women [27]. In 
contrast, our study examines the induction of placental oxidative stress 
at the critical time period following placentation. Further, our study 
was not confounded by the increase in oxidative stress known to be 
associated with parturition [17,28]. Finally, Roberts et al. [27] selected 
for uncomplicated pregnancies [27], which may have reduced the 
likelihood of detecting placental oxidative stress, while our sample is 
unselected. Another advantage of our study is that our subjects were 
matched for important baseline variables that could potentially affect 
oxidative stress. Consistent with non-pregnant studies [8], the level of 
oxidative stress measured in the serum was slightly increased in our 
obese subjects. However, only a subset of subjects had serum available 
for analysis, limiting our power to establish statistical significance.

There are numerous advantages to the assessment of placental 
oxidative stress as described and performed in our study. First, Hansen 
et al. demonstrated the appropriateness of determination of the global 
cellular sulfhydryl status as an indicator of oxidative stress [19]. Protein 
cysteine residues (e.g. sulfhydryls) are considered to be redox switches 
and mediate oxidative and nitro sative stress-induced signaling events 
that are critical to cell fate. Rather than assaying a specific component 
of the oxidative stress (e.g. antioxidant levels), which may fail to detect 
oxidative stress, tissue assessment of protein redox status is highly 
sensitive. Second, this direct measurement of the total protein redox 
status is straightforward and reproducible. Third, samples can be stored 
and assayed in batch, further reducing variability within the assay.

We anticipate that our approach affords the opportunity to 
identify obesity-related mechanisms of placental oxidative stress in the 
first trimester. Further, our study implicates pre-pregnancy maternal 
obesity as a potential first-trimester marker for selection of those whom 
may be candidates for antioxidant trials for the prevention of adverse 
pregnancy outcome.
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