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Different strategies have been proposed for the co-generation of 
heat and power (CHP) from renewable raw materials. Bioethanol was 
proposed by many authors as a promising biomass derived compound, 
being easy to handle, non toxic, with sufficiently high power density 
[1-3]. Innovative routes for its production as second generation biofuel 
are becoming available, leading to environmentally, ethically and 
economically sustainable bioethanol. The economical plan proposed 
by Biochemtex, for instance, is based on 0.3 euro/L for the production 
of lignocellulosic anhydrous bioethanol [4] and a brief overview of the 
bioethanol production costs has been very recently proposed [5]. Thus, 
bioethanol can be effectively suggested as a feedstock for fuel cell based 
systems. 

Ethanol can be used as substrate for steam reforming and the 
reformate can feed various types of fuel cells. For instance, Solid Oxide 
Fuel Cells (SOFCs) are currently under study both for stationary and 
automotive power generation, the latter application with very short 
commercialisation perspective, according to the latest news [6].

A 250 W system based on authothermal reformer and a fuel cell 
stack has been studied [7]. A minimum amount of process controls 
and little internal heat integration kept the system architecture simple, 
as required for portable applications, at difference with bigger power 
systems, where heat integration represents the core for the sustainability 
of the process [8,9]. Indeed, for stationary applications the increase of 
efficiency is seen as a predominant factor with respect to simplification. 

Typically, CHP units based on fuel cells fed with bioethanol should 
consist of a fuel reforming system (e.g., a steam reformer), followed 
by a hydrogen purification section, which should be more or less 
sophisticated depending on the types of fuel cells in use. The main 
issue is represented by the tolerance of the fuel cells catalysts to the 
presence of CO. Normally the catalysts are more tolerant at higher 
working temperature. Thus for instance low temperature Polymer 
Electrolyte Membrane Fuel Cells (PEMFCs) operating at ca. 80°C are 
poorly tolerant to CO, with a maximum allowed value around 20 ppm. 
A new generation of membranes has been more recently developed, 
allowing operation at 160-170°C (High Temperature, HT-PEMFC) and 
thus increasing very much the tolerance to CO (ca. 0.5-1 vol%). Fuel 
cells intrinsically operating at higher temperature, such as SOFCs can 
stand reformate compositions almost without any CO concentration 
adjustment, with consequent simplification of the process layout and 
ultimately a decrease of cost.

Different power systems system have been proposed, with 
reformate purification from CO based on preferential oxidation and 
attention to the control logic and heat integration [10-12]. The technical 
feasibility of using existing steam reforming and hydrogen separation 
technologies to produce hydrogen from bioethanol at industrial level 
(100,000 Nm3/h) has been also explored [13]. The oxidative reforming 
of ethanol [14] and n-hexadecane [15] has been investigated in 
microreactors to feed micro-fuel cell systems and computational fluid 
dynamics simulation of ethanol steam reforming in catalytic wall 

microchannels has been performed on a Co3O4–ZnO catalyst [16]. The 
application of membrane reactors was additionally proposed for CHP, 
in order to improve the hydrogen purification section [17-19].

A CHP system fed with bioethanol should consist of a fuel processor 
including an ethanol steam reforming catalyst. Various materials 
have been proposed recently as active for the present reaction. Two 
keypoints should be kept in mind. i) The highest hydrogen productivity 
at the lowest possible temperature: the reaction is endothermal, but 
much less energy demanding than rival processes, such as the steam 
reforming of methane. Therefore, materials can be designed to operate 
as low as 400-500°C with full substrate conversion. ii) Enhanced 
stability towards coking is compulsory when operating at relatively 
low temperature where possible carbon gasification reactions are not 
effective. Some examples can be found in the literature [20-26].

To improve the energy efficiency of the systems heat should 
be efficiently supplied by burning part of the fuel. Efficient reactor 
configurations are represented e.g., by multitubular reactors [26,27]. A 
possible alternative, especially required when diluted ethanol mixtures are 
used, is product split to use part of the reformate as fuel [9,28,29]. The most 
innovative designs provide a catalytic burner, the catalysts for the catalytic 
combustion of C2H5OH being coated on the outer surface of the reformer 
tubes, in very efficient thermal contact with the reforming catalyst which is 
coated on the internal skin of the same tubes [30]. 

Reformate purification from CO can be then accomplished by 
coupling in series different processes, such as Water Gas Shift (WGS) 
reactors in variable number, followed by a preferential oxidation 
(PROX) reactor, or, alternatively, a selective methanation (METH) 
reactor, needed when LT-PEMFCs are used. Alternatively, CO 
separation by Pressure Swing Adsorption (PSA) is possible, but uneasy 
to handle for small applications.

Demonstrative systems have been proposed for CHP from 
bioethanol. The key for efficiency improvement should be a better 
thermal integration of the system, with the reformate production at the 
lowest possible temperature (taking the advantage of the relatively high 
reactivity of the substrate), keeping in mind catalyst resistance towards 
deactivation by coking. At the same time, an increase of the operating 
temperature of the fuel cell is envisaged. The latter would ensure a better 
tolerance to CO, with consequent lower need of hydrogen purification 
and a decrease of process complexity. The use of diluted bioethanol 
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streams has been further proposed in order to cope with a much less 
expensive and energy intensive feedstock for CHP.
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