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Abstract

Alcohol consumption with psychostimulants is very common among drug addicts. There is little known about the
possible pharmacological interactions between alcohol and psychostimulants. Among most commonly co-abused
psychostimulants with alcohol are methamphetamine, cocaine, 3,4-methylenedioxymethamphetaminen, and
nicotine. Co-abuse of alcohol with psychostimulants can lead to several neurophysiological dysfunctions such as
decrease in brain antioxidant enzymes, disruption of learning and memory processes, cerebral hypo-perfusion,
neurotransmitters depletion as well as potentiation of drug seeking behaviour. Moreover, co-abuse of alcohol and
psychostimulants can lead to increase in heart rate, blood pressure, myocardial oxygen consumption and cellular
stress, and the risk of developing different types of cancer. Co-abuse of alcohol with psychostimulants during
pregnancy can lead to fetal brain abnormalities. Further studies are needed to investigate the pharmacokinetics,
pharmacodynamics, and neurochemical changes on co-abuse of alcohol and psychostimulants.
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Introduction
Alcohol dependence is considered a major public health problem

worldwide [1-6]. Alcohol can contribute to a significant number of
disabilities due to psychological, medical, injury, or other detrimental
effects [7]. These effects can be dramatically severe when alcohol is
consumed with other drugs of abuse. Alcohol consumption with other
drugs of abuse is very common among drug users. Different
pharmacological mechanisms of interactions may occur when alcohol
and other psychostimulants are co-abused. It is noteworthy that drugs
of abuse have been shown to alter central brain reward circuitry, which
can lead addicts to increase their alcohol intake for reward effects [8,9].
Alcohol use with other drugs of abuse has been reported to hinder
decision making, thinking, and neurocognitive capabilities [10-15].
Moreover, recent studies confirmed that alcohol and other drugs of
abuse are usually found in the blood of deceased or seriously injured
drivers involved in traffic accidents caused by psychomotor function
impairment [16-20].

We discussed here several findings related to alcohol interactions
with psychostimulants. According to previous reports, alcohol is
commonly abused with methamphetamine (METH), cocaine and
marijuana [21]. Men have higher prevalence of co-abuse of alcohol and
other drugs compared to women [22]. The prevalence of drugs of
abuse has been shown to have a positive correlation with the level of
alcohol intake [22]. We reviewed here the available literature regarding
alcohol interactions with certain psychostimulants, including METH,
cocaine, nicotine, and 3,4-methylenedioxymethamphetaminen
(MDMA), according to animal experimental and clinical studies.

Alcohol and METH co-abuse
METH abuse is an increasing health problem worldwide. According

to the available data from national surveys between the years of 2002
and 2004, more than 16 million Americans over the age of 12 have
used METH [23]. METH is a derivative of amphetamine with
increased CNS activities and effects. METH can be abused by different
routes such as inhalation, ingestion, or intravenous injection, with
acute effects that can last for up to 24 h [24,25]. It is well known that
METH can stimulate the release of monoamines such as dopamine and
norepinephrine to produce euphoria and to increase alertness and
libido [26-28]. METH abusers frequently use alcohol and have a higher
risk of reaching alcohol intoxication level [29]. The prevalence of
alcohol use disorder was found 75% higher among amphetamine
dependent patients [30]. For example, a study reported that more than
60% of METH users in New York City reported abusing METH in
combination with alcohol [31]. Recent study conducted on regular
METH users showed that alcohol drinking increased the chances of
METH use in same day by more than 4 folds [32]. Despite this
evidence of high prevalence of METH and alcohol co-abuse, very few
studies have investigated the effects of their co-abuse. A summary of
possible effects of concurrent exposure to alcohol and METH is
presented in Table 1.
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Drug of Abuse Aspect of interaction Effects of interactions

METH

METH metabolism

Alcohol decreased p-hydroxylated metabolites of METH in the
urine of METH abusers [33].

Alcohol increased the levels of METH and its active metabolite,
amphetamine, in rats and rabbits [34,35].

Performance and sleep
Lower detrimental effects on performance and sleep compared
to each drug alone [36].

Euphoria
Increased euphoria in alcohol and methamphetamine co-abuse
[36].

Cardiac effects Increased myocardial oxygen consumption and cardiac rate [37].

Prenatal exposure Damage to striatal region of the brain [41].

Oxidative stress

Combination caused more impairment of antioxidant enzymes in
rats hippocampus and oxidative stress than either drug alone
[39].

Cocaine

Cocaine metabolism

Alcohol decreased metabolism of cocaine [68]. Alcohol
decreased benzoylecgonine renal excretion, and increased in
cocaine and cocaethylene blood concentrations [69].

Cardiovascular and endocrine systems
Exposure to cocaine and alcohol increased heart rate, systolic
blood pressure, cortisol, and prolactin levels [64,69].

Cerebral blood perfusion

Cerebral hypo-perfusion occurred more in individuals taking
cocaine and alcohol than in individuals taking cocaine or alcohol
alone [72,73]

Neurobehavioral performances
Negatively affected by concurrent intake of cocaine and alcohol
compared to either drug alone [74,75].

Mesocorticolimbic dopamine system

Increased extracellular dopamine concentration than either drug
alone in nucleus accumbens in rats [90]

Sense of pleasure and euphoria were found to be improved [71].

Nicotine

Drug reinforcement

Rats have established self-administration and place preference
to combination of alcohol and cocaine in concentrations that did
not provoke reinforcement to either drug alone [56,78]. Cocaine
potentiated alcohol seeking [59,79]

Mesocorticolimbic dopamine system
Increased in dopaminergic neuron firings and dopamine release
in an additive mechanism [111-116].

Pleasure and drug seeking

Increased in the pleasurable effects of each drug [119]. Rats
self-administered nicotine more than rats received chronic
exposure to either drug alone [108].

Cardiovascular system

Additive effect on heart rate and blood pressure was found in
healthy human volunteers [130,131]. Synergistic increase in left
ventricular pressure in dogs [132].

Cancer Increase in the risk of developing esophageal cancer [120-123].

Prenatal exposure

Showed a multiplicative effect in increasing the risk of head and
neck cancer in human [124].

Increased the risk of fetal growth restrictions in human [133-135].
Offspring developed rapid nicotine self-administration and at a
higher level in rats [136].

MDMA Cardiovascular system

Exacerbated cardiac cellular stress and toxicity through
augmented activation of cardiac sympathetic system in
adolescent mice [139].

Blood level
MDMA plasma concentration increased following alcohol intake
[149].
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Drug reinforcement

MDMA and alcohol induce a longer duration of euphoria [149].

Exposure to alcohol during adolescent age in mice increased the
reinforcing effects of MDMA [156].

Sedation
MDMA reversed the sedative effect induced by alcohol
consumption [149].

Learning and memory
Administration of alcohol and MDMA exhibited learning and
memory impairments [159]

Dopamine reward effect
MDMA impaired dopaminergic reward pathway, leading to
increase alcohol consumption [154].

Psychopathological effect

Long term consumption of MDMA and alcohol can lead to
serotonin depletion and cause psychopathological changes
[155].

Prenatal exposure
Impaired working memory, exploratory activity, and neurogenesis
in rats offspring [163].

Table 1: Aspects and effects of alcohol and psychostimulants interactions.

Previous findings demonstrated that alcohol can decrease p-
hydroxylated metabolites of METH in the urine of METH abusers,
suggesting that alcohol may inhibit METH metabolism [33] (Table 1).
This may lead to higher METH blood concentration, with an increase
in its stimulating effects on brain and heart. Moreover, recent findings
showed that alcohol increased the absorption and distribution of
METH and its active metabolite, amphetamine, in several organs,
including brain in rats and rabbits (Figure 1) [34,35]. A recent study
compared the acute effects of alcohol, METH, and their combination
on mood, performance, and physiological behaviours of nine adult
males [36]. This study showed that when alcohol and METH were co-
self-administered, a greater increase in heart rate, euphoria, and lower
detrimental effects on sleep and performance were observed compared
to each drug self-administered alone. This may explain why METH
abusers tend to consume high level of alcohol [36]. These findings raise
an alarming concern of METH and alcohol co-abuse because METH
might mask the signs of alcohol intoxication, such as sedation and
compensated performance, allowing abusers to consume more alcohol
with risk of developing alcohol toxicity.

Figure 1: Effects of alcohol on the pharmacokinetics of
methamphetamine(METH), 3,4-
(MDMA), cocaine, and nicotine. (↑ increase or enhancement; 
↓ decrease or deterioration).

A double blind study was conducted on eight alcohol and METH
abusers [37]. The abusers were found to have high myocardial oxygen

consumption and increased heart rate (Figure 2). In this study, the
pharmacokinetics of METH did not change significantly, which is
possibly due to the limited number of subjects recruited in this study.
However, further testing should be done on more subjects to reach
more conclusive evidence of the effect of alcohol on METH
pharmacokinetics [37]. A recent clinical study conducted on nine
volunteers showed an increase in heart rate [36]. Furthermore, findings
showed that concurrent consumption of METH and alcohol disrupted
learning and discriminating behaviour compared to METH self-
administered alone in rats [38]. However, this study did not focus on
the effects of alcohol alone which may hinder the conclusion that
METH and alcohol co-abuse may disturb the performance compared
to METH administered alone. A recent study conducted on rats
revealed that concurrent intake of METH and alcohol can lead to
synergistic effect in impairment of spatial memory compared to
METH administered alone [39]. Interestingly, alcohol administered
alone did not cause any changes in spatial memory suggesting the
synergistic effects of both drugs on memory. Moreover, this study
showed that although alcohol or METH administered alone can induce
oxidative stress and impairments in antioxidant enzymes in rats
hippocampus, co-abuse of METH and alcohol can cause synergistic
effect in impairment and oxidative stress compared to drug
administered alone (Figure 3) [39].

Figure 2: Effects of alcohol interactions with methamphetamine
(METH),3,4-methylenedioxymethamphetaminen (MDMA),
and nicotine on cardiovascular system. (↑ increase or enhancement; 
↓  decrease or deterioration).
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Concurrent exposure to METH and alcohol has also been observed
in pregnant women. Indeed, a study demonstrated that more than 40%
of pregnant women who abused METH reported using alcohol during
their pregnancy [40]. Another study was conducted on 61 participants;
13 of them were exposed prenatally to alcohol, 21 were exposed
prenatally to METH, and the remaining 27 control participants were
not prenatally exposed to either alcohol or METH [41]. Of the 21
participants in METH group, 18 children were also exposed to alcohol
during their fetal life. The results of this study suggest that prenatal
exposure to METH and alcohol can cause synergistic striatal structural
damage than prenatal exposure to alcohol alone. Damage to the striatal
brain region hinders the overall intellectual competence of the affected
children [41]. In addition, in a study that found common damage in
the fronto-striatal circuit of the prenatally METH exposed group, 15
out of 19 children were exposed to alcohol and METH prenatally
(Figure 4) [42]. It is important to note, however, that these studies
could not precisely predict the dosage, frequency, and duration of
METH or alcohol exposure during pregnancy, which may hamper our
understanding of the pharmacological and neuropathological basis of
drugs exposure and their interactions. Preclinical studies are warranted
to show the risk of concurrent exposure of METH and alcohol during
different stages of pregnancy, which may provide information about
the deteriorating effects of prenatal exposure of METH and alcohol.

Figure 3: Effects of alcohol interactions with methamphetamine
(METH),3,4-methylenedioxymethamphetaminen (MDMA),
and nicotine on central nervous system. (↑ increase or enhancement; 
↓ decrease or deterioration).

Alcohol and cocaine co-abuse
Cocaine can produce different effects on the human body; these

effects can last from minutes to hours, based on the route through
which cocaine was administered into the body [43]. In the brain,
cocaine can affect the reward circuitry by modulating dopamine
neurotransmission [44], and acts by preventing the reuptake of
dopamine from the synaptic cleft, which leads to prolongation of the
pleasurable effects of dopamine [44,45]. Cocaine can produce
euphoria, alertness, dependence and tolerance as well as cardiovascular
changes [46-50]. Tolerance makes cocaine users increase dosage each
time to reach the same level of euphoria that was reached on the first
instance of taking the drug. Increasing the doses of cocaine can lead to
its side effects and toxicity [51-54]. It is important to note that the
prevalence of alcohol use was found 89% higher among cocaine
dependents [55]. This might be due to higher increase of reward effects
when alcohol and cocaine co-abused compared to either drug self-
administered alone, which have been shown in preclinical studies
[56-58]. In a study conducted on rats, intravenous injections of cocaine
increased alcohol drinking suggesting that cocaine potentiated alcohol

seeking [59]. Interestingly, a preclinical study showed a higher genetic
susceptibility of the reinforcing effects of cocaine in selectively bred
alcohol preferring (P) rats compared to its outbred Wistar rats, which
suggests a higher sensitivity of alcoholics to the reinforcing effects of
cocaine [60]. Similarly, it has been revealed that genetically
predisposed subjects for alcohol dependence have a higher rate to be
cocaine dependents [61].

Figure 4: Effects of prenatal exposure to alcohol and
methamphetamine(METH),3,4-
(MDMA), cocaine, and nicotine. (↑  increase or enhancement; 
↓ decrease or deterioration).

Cocaine co-administered with alcohol can lead to production of
cocaethylene, which is more lethal than cocaine itself [62,63]. This
cocaethylene can also produce most of the effects that are associated
with cocaine [64,65]. Concurrent exposure of alcohol and cocaine may
cause more lethality in rats than either drug administered alone, which
probably due to the formation of cocaethylene [66]. Interestingly,
cocaethylene detection in wastewater has been utilized in recent study
as an evidence of co-abuse of cocaine and alcohol in different cities
[67]. Cocaethylene levels were found to be significantly higher during
weekends compared to weekdays suggesting a higher co-abuse of
cocaine and alcohol during weekends [67].

Alcohol has been shown to increase the plasma concentration of
cocaine [68]. This is probably mediated through a decrease in the
metabolism of cocaine by carboxylesterases, which hydrolyze it to
benzoylecgonine and ecgonine methyl ester metabolites [68] (Table 1).
Furthermore, it has been demonstrated that alcohol administered with
cocaine can lead to increase in cocaethylene concentration in plasma
and decrease benzoylecgonine renal excretion (Figure 1) [69]. It is
noteworthy that different routes of drug exposure may produce
different peak levels of cocaethylene [70]. For example, oral
administration is considered the highest in raising cocaethylene
concentration in blood as compared to intravenous route [70]. The
inhalation route (i.e., smoking) showed the lowest effect on
cocaethylene blood concentration compared to oral and IV routes [70].
Furthermore, cocaine and cocaethylene blood concentrations were
obtained following concurrent use of cocaine and alcohol [71]. This
study revealed that the concentration of cocaine in plasma was found
to be increased by 15% after cocaine and alcohol co-exposure.
Moreover, 22% of the absorbed cocaine was converted to cocaethylene.
Although, cocaine half-life was not altered significantly by ingestion of
alcohol, cocaethylene’s half-life was increased in comparison to
cocaine’s [71]. Increasing the half-life of cocaethylene might impose
serious health problem due to increasing body exposure to its
deteriorating toxic effects.
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Concurrent exposure to cocaine and alcohol has deleterious effects
on cardiovascular and endocrine systems. Co-abuse of cocaine and
alcohol was found to increase heart rate, systolic blood pressure,
cortisol, and prolactin concentrations (Figure 2) [64,69]. In addition,
cerebral blood perfusion was found to be affected by co-exposure to
cocaine and alcohol [72,73] (Table 1). It has been shown that cerebral
hypo-perfusion was more common among individuals taking cocaine
and alcohol compared to individuals taking cocaine or alcohol alone
[72,73]. These findings show the significant deleterious effects of the
co-abuse of alcohol and cocaine on cardiovascular system that might
result in debilitating conditions.

Several tests were performed on intelligence, memory, verbal
learning and other aspects of neuropsychological performances to
explore the effects of co-abuse of alcohol and cocaine [74,75] (Table 1).
The resulting neuropsychological performances were found to be
negatively affected by the concurrent intake of cocaine and alcohol
compared to either drug administered alone (Figure 3) [74,75]. It has
been shown that the sense of pleasure and euphoria increased in co-
abuse of alcohol and cocaine and consequently elevated the risk of
dependence and toxicity [71,76]. In addition, alcohol was found to
significantly potentiate the effect of cocaine in conditioned place
preference in rat and invertebrate animal models [56,77]. Moreover,
study showed that there is a synergistic effect in self-administration of
both alcohol and cocaine in concentrations that did not provoke self-
administration to either drug alone [78]. Similarly, a recent study has
shown the potentiating effect of cocaine on alcohol seeking and
relapse-like alcohol intake in P rats [79]. This might indicate a cross
reactivity between alcohol and cocaine on common drug seeking
behaviour.

Several studies have shown the involvement of mesolimbic
dopaminergic system in reinforcing effects of cocaine [80-83] and
alcohol [84,85]. In fact, alcohol and cocaine co-exposure increased
extracellular dopamine concentration in the nucleus accumbens, well
known brain region involved in the rewarding and reinforcing effects
of drugs of abuse [86-89], than either drug administered alone in rats
[90] (Table 1). Furthermore, recent findings have demonstrated the
critical role of glutamate and its uptake in central brain reward regions
in the seeking and reinforcing effects of cocaine [91-93] and alcohol
[94-97]. Further studies are needed for investigating the role of
glutamatergic system in alcohol and cocaine co-abuse in brain regions
involved in rewarding and reinforcing effects of these drugs.

Alternatively, studies have shown the detrimental effects of prenatal
exposure to cocaine such as low birth weight, preterm delivery, and
decrease in head circumstance [98-101]. However, prenatal co-
exposure to cocaine and alcohol has not been well studied despite the
findings that more than 85% of women who reported using cocaine
during pregnancy, also reported concurrent alcohol use [98]. One
recent study, however, has demonstrated a significant interaction in
prenatal co-exposure of cocaine and alcohol on cortical thickness in
youths prenatally exposed to these drugs [102]. Furthermore, it has
been shown that prenatal exposure to alcohol increased the rewarding
and reinforcing effects of cocaine in rats (Figure 4) [103].

Alcohol and nicotine co-abuse
Alcohol and nicotine have serious global health problems. Table 1

summarizes different studies of the effects of alcohol and nicotine co-
abuse. Nicotine dependents may have high tendency to be alcohol
dependents [104]. It has been reported that more than 80% of chronic
alcohol users are also smokers [105-107]. In a preclinical study, rats

chronically co-exposed to alcohol and nicotine showed higher nicotine
self-administration as compared to drug self-administered alone [108].
Although, it has been suggested that nicotine or alcohol consumed
alone may have some beneficial effect at low doses, it is clear that co-
abuse of these drugs may have negative effects on human health [109].

Nicotine and alcohol activate the mesocorticolimbic dopaminergic
system; there is potential synergistic effect in the increase of dopamine
release when the drugs are consumed concurrently [110].
Furthermore, studies showed that alcohol and nicotine co-abuse can
lead to increase dopaminergic neuronal firings and dopamine release
[111-116] (Table 1). It is suggested that the synergistic effect of these
drugs may influence drug reinforcement to each other and predispose
smokers to become alcoholics and vice versa [110,117]. Interestingly,
an additive effect on dopamine release in the nucleus accumbens shell
was found between alcohol and nicotine in rats [116]. This additive
effect on dopamine release was inhibited by mecamylamine pre-
treatment, a nicotinic receptor antagonist, suggesting the involvement
of nicotinic receptors in the reinforcing effects of alcohol. Importantly,
alcohol-induced dopaminergic neurons firing in ventral tegmental area
were inhibited in mice lacking nicotinic acetylcholine receptors that
contain α6 subunit [118]. Moreover, it has been shown that alcohol and
nicotine co-abuse can increase the pleasurable effects of each drug
[119] (Table 1). This may explain some of the pharmacological
mechanisms of action involving the co-abuse of nicotine and alcohol in
the modulation of dopamine release (Figure 3).

The risk of developing cancer in general is higher in heavy tobacco
smokers and alcohol drinkers [120-123]. In case-controlled clinical
studies that were conducted on European and American subjects,
alcohol and tobacco smoking elevated the risk of head and neck cancer
in patients addicted to both drugs [124]. The exact mechanism of
alcohol and nicotine interaction that results in the development of
cancer is not well known and remains controversial. Studies have
suggested that alcohol and nicotine co-abuse may produce toxic
metabolites such as acetaldehyde, which may contribute to cancer
development [125,126]. Other studies have suggested that alcohol and
nicotine co-abuse promotes the formation of premalignant lesions
(Figure 1) [127-129].

The effects of alcohol and nicotine co-abuse on cardiovascular
system have been also investigated. Synergistic effects on heart rate and
blood pressure were found in healthy human volunteers following
alcohol and nicotine exposure [130,131]. Interestingly, the order of
self-administering alcohol and nicotine plays a role in their negative
interactive effect on cardiovascular system. When self-administration
of alcohol was followed by nicotine, a synergistic effect on the increase
in left ventricular pressure was revealed, which was alleviated when
self-administration of nicotine was followed by alcohol in dogs (Figure
2) [132].

In a study investigated the link between alcohol and nicotine use
during pregnancy in more than 14000 previous pregnant mothers, it
was found that more than 55% of pregnant alcohol users reported
smoking [133]. Alcohol and nicotine exposure during gestational
period increased the risk of fetal growth abnormalities more than the
exposure to alcohol alone [133-135]. Interestingly, in a study
conducted on rats, alcohol and nicotine were co-administered to
pregnant rats throughout the gestational period [136]. This study
showed that offspring prenatally co-exposed to nicotine and alcohol
developed rapid increase in nicotine self-administration as compared
to controls (Figure 4) [136].
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Alcohol and MDMA co-abuse
According to 2001-2002 national epidemiologic survey in United

States, the prevalence of alcohol use in MDMA users is more than 95%
[137]. MDMA and alcohol exposure in adolescent mice induced
physiological and behavioural alteration than either drug administered
alone [138]. In fact, recent study has shown that the co-abuse of
MDMA and alcohol exacerbated cardiac cellular stress and toxicity
through augmented activation of cardiac sympathetic system in
adolescent mice (Figure 2) [139]. MDMA can induce a rapid release of
dopamine and serotonin [140]. High consumption of MDMA may
result in depletion of serotonin in the brain, resulting in serious
psychological consequences [141-148]. MDMA is usually consumed
with many drugs such as amphetamine, cocaine, cannabis, and alcohol.
Alcohol and MDMA co-abuse is considered the most popular form of
MDMA co-abuse [149-153]. Importantly, mice pre-treated with
MDMA were found to consume high amount of alcohol compared to
control mice [154] (Table 1). Therefore, mice consumed higher
amounts of alcohol to reach to the same reward effect that was
normally reached at lower doses of alcohol. This study also found that
MDMA impaired the dopaminergic pathway. Furthermore, findings
revealed that presynaptic modulation of serotonin release in the
hippocampus is affected by exposure to both MDMA and alcohol
[155]. This study also showed that long term consumption of MDMA
and alcohol caused serotonin depletion. The alteration in the
serotonergic system might be associated with the psychopathological
disturbances observed in MDMA and alcohol co-abusers [155] (Table
1).

It has been found, in a double blind study conducted on nine
healthy human volunteers, that MDMA and alcohol co-abuse induced
a longer duration of euphoria and feeling well as compared to drug use
alone [149]. Therefore, MDMA and alcohol use together can increase
the abuse potential more than abusing alcohol or MDMA alone. In a
preclinical study, exposure to alcohol during adolescent age in mice
increased the reinforcing effects of MDMA [156]. Moreover, exposure
to MDMA and alcohol during adolescence potentiated anxiety
measures, impaired learning and memory, and decreased striatal
dopamine contents during adult life in mice (Figure 3) [157,158].
Studies have demonstrated an increase in the MDMA plasma
concentration by 13% following alcohol intake and a decrease in blood
alcohol concentration of about 12% compared to either drug
administered alone (Figure 1) [149]. In addition, these studies found
that MDMA reversed the subjective sedative effect, which was induced
by alcohol consumption.

A recent study aimed to find the effect of MDMA and alcohol co-
abuse on learning and memory [159]. In this study, alcohol and
MDMA were administered either together or alone to measure their
effects on learning and memory in adult mice. Both drugs caused
impairment of learning and memory, as the affected mice displayed an
imbalance in the interaction of dopamine and serotonin. These
findings suggest that the brain in adulthood is very sensitive to MDMA
and alcohol damage [159]. However, other study did not demonstrate
any additive effect of combining alcohol and MDMA on declarative
memory in mice [160] (Figure 3). This might be due to several factors,
including the doses used for alcohol and MDMA.

Prenatal exposure to alcohol and MDMA is understudied topic,
although pregnant women who reported MDMA use during
pregnancy also reported higher alcohol use compared to non MDMA
users [161,162]. Importantly, a preclinical study found that prenatal
exposure to both alcohol and MDMA impaired working memory,

exploratory activity, and neurogenesis in rat’s offspring (Figure 4)
[163].

Conclusion
Alcohol interaction with drugs of abuse is currently not well

understood, however, there are studies that demonstrated numerous
side effects, which have occurred with drugs co-abuse. The prevalence
of concurrent abuse of alcohol with psychostimulants such as METH,
cocaine, nicotine, or MDMA is extremely high. This increase in
prevalence of co-abuse of alcohol with psychostimulants is most likely
due to potentiated effects on euphoria and pleasure as well as decrease
detrimental subjective effects of either alcohol or other drugs of abuse.
Co-abuse of alcohol with psychostimulants can lead to serious negative
consequences on the brain such as decreasing antioxidant enzymes,
disrupting learning and memory processes, cerebral hypo-perfusion,
neurotransmitters depletion as well as potentiating drug seeking
behaviour. Moreover, co-abuse of alcohol and psychostimulants can
lead to increase in heart rate, blood pressure, myocardial oxygen
consumption and cellular stress as well as increase in the risk of
developing different types of cancer.

Alcohol has been shown to increase the blood concentration of
different psychostimulants and its active metabolites. It is suggested
that the pharmacokinetics of METH, MDMA, cocaine, and nicotine,
might be altered when alcohol is consumed concurrently with these
drugs. We suggest here that alcohol metabolism and its metabolites
may increase the blood concentration of these drugs of abuse, and
consequently elevate the risk of toxicity. Importantly, alcohol co-abuse
with psychostimulants during pregnancy can impose critical structural
and functional damages in the fetal brains. Further studies are needed
to investigate possible pharmacodynamics, pharmacokinetics, and
neurochemical basis of co-abuse of alcohol and psychostimulants as
well as possible therapeutic interventions.
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