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Introduction 
Rapidly evolving gene sequencing technologies have revealed the 

relation between mutations in genes and the onset of symptoms that can 
be assigned to corresponding genetic disorders. More than a hundred 
thousand unique pathogenic variants are available from the Human 
Gene Mutation Database (HGMD) [1] that are known to cause over ten 
thousand different monogenic disorders [2] and almost four thousand 
genes already have been described that are involved in polygenic 
disorders [3]. Next generation gene sequencing efforts, on the other 
hand, have revealed that harmless single nucleotide polymorphisms 
(SNPs) are even more frequent in the human genome. More than ten 
million DNA variations have been uncovered in the human genome, 
of which about 4% are located in gene coding regions and about half 
of those (2%) are non-synonymous SNPs (nsSNPs) that thus result in 
an amino acid change in the corresponding proteins [4]. In fact, it was 
estimated by Crawford et al. [4] that on average each gene contains five 
nsSNPs that are present in more than 5% of the human population. 
Only a small fraction of these nsSNPs have an effect on the function 
of the corresponding protein and can be classified as pathogenic. It 
is evident that gene sequencing is a promising method for diagnosis 
of genetic disorders, but the frequent occurrence of benign variants 
drastically hampers routine diagnosis of genetic disorders. 

Mutation databases, such as HGMD, OMIM [5], and protein specific 
databases, such as for example the P53 mutation databases [6,7], can 
be used as reference for previously identified pathogenic variants. In 
the daily practice of DNA diagnostics one obviously encounters many 
variants for which these databases have no information available yet. In 
such cases one normally resorts to literature searches or, if that fails, to 
any of a series of tools, such as Polyphen-2 [8], SIFT [9], and HOPE [10] 
that have been developed for the in silico evaluation or prediction of 
the effects of variants on gene and protein function. However, in many 
cases variant effects are known for homologous proteins. The concept 

of evolution is that all homologs share a common ancestor and thus it 
makes sense that variants on equivalent positions would cause a similar 
effect (e.g. cause a disease). 

The first step in transferring mutability data between proteins is to 
identify the equivalent positions. However, to confidently determine 
which positions are equivalent is difficult unless the proteins in the 
alignment are so similar that aligning them becomes trivial. Jordan et 
al. [11] showed that the publicly available mutant severity prediction 
methods sometimes produce very poor alignments, and thus 
questionable predictions. Therefore, protein superfamily information 
systems that use structural alignments are needed to analyze these 
proteins and enable data transfer between proteins that are more 
distantly related but still share a common fold.

We have previously described 3DM [12], a system that can generate 
superfamily systems that fully integrate sequence data with literature 
data, mutation information, and three-dimensional structures. The 
3DM multiple sequence alignments are derived from structure 
superpositions. This makes them more correct than commonly available 
alignments, and it allows for larger numbers of sequences to be reliably 
included in the alignments. 3DM systems contain all available sequence 
variants (protein- and DNA sequences of all splice variants, with and 
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Abstract
The prediction of missense variant pathogenicity is normally performed using analyses of multiple sequence 

alignments optionally augmented with analyses of the (predicted) protein structure. The most straightforward way, 
though, is to search the literature to see whether this variant has already been described. Variant data from homologous 
proteins are also valuable because mutations in a homologous protein often have similar effects as mutations at the 
equivalent residues of the protein of interest. Transferring variant data seems trivial but is seriously hampered by the 
fact that homologous residue positions have different numbers in different species. This problem is even bigger when to 
proteins have such low sequence identities that they can no longer be aligned based on their sequences only and their 
structures need to be compared to align them accurately. The protein superfamily analysis software suite 3DM solves 
these problems, because 3DM is a system that combines high quality structure based multiple sequence alignments 
in which aligned residues have the same number, with all published mutant and variant data for human and all other 
species. We have used 3DM to analyze nine human proteins for which many disease-related variants are known. This 
study reveals that mutation data can be transferred even between very distant homologous proteins. Thus, protein 
superfamily information systems, such as 3DM, offer a wealth of unused information that can be used in the analysis of 
human variants. 



Citation: van den Bergh T, Vroling B, Kuipers RKP, Joosten HJ, Vriend G (2016) Common Pitfalls and Novel Opportunities for Predicting Variant 
Pathogenicity. Biochem Physiol 5: 197. doi: 10.4172/2168-9652.1000197

Page 2 of 4

Volume 5 • Issue 1 • 1000197
Biochem Physiol 
ISSN: 2168-9652 BCP, an open access journal 

without leader sequences). We have generated 3DM systems for five 
proteins that are involved in long QT syndrome (gene names: KCNQ1, 
KCNH2, SCN5A, SCN1A, KCNJ2) and for four members of the 
amylase superfamily that are involved in Fabry disease, Schindler- or 
Kanzaki disease, glycogen storage disease, and cystinuria (gene names: 
GLA, NAGA, GBE1, SLC3A1, respectively).

In this work we show that the mutability of residues can still be 
transferred even on a superfamily scale where proteins are sequentially 
very different. The sequence identity between the proteins in our 
manuscript is as low as 10% and thus these proteins can no longer 
be aligned by sequence alignment programs. Therefore, protein 
superfamily information systems that use structural alignments, 
such as 3DM, are needed to analyze these proteins and transfer data 
for pathogenicity predictions. Additionally, we show that automated 
literature mining software can outperform manually curated databases 
such as HMGD, both in terms of the number of unique mutations 
extracted, as well as the depth of information per mutation.

Method
3DM information systems

The 3DM software that generates superfamily information systems 
is extensively described elsewhere [12,13], and will here only be 
discussed briefly. A structure based multiple sequence alignment (MSA) 
forms the backbone of each information system. 3DM uses protein 
structure data to determine which regions are structurally conserved. 
These regions are termed core regions and 3DM normally uses only 
these superfamily core regions to generate the superfamily alignments. 
All sequences and structures are renumbered so that residues aligned 
in the MSA get the same number throughout the information system. 
This enables the transfer of data and knowledge between proteins, and 
facilitates literature searches for mutations in homologs.

Multiple sequence alignments
To predict the pathogenicity of non-synonymous variants the quality 

of alignments is of much greater importance than the completeness of 
the MSA. Structure based sequence alignment methods, which are used 
by default in the 3DM systems, tend to produce alignments of higher 
quality and deeper coverage than classical MSA methods. However, 
for the long QT related genes, structure information is available for 
only small parts of the proteins. To enable high-quality predictions, we 
implemented a method that aligns only those parts of the sequences 
that can be aligned with great confidence, similar to the way the 
PROTOMAT algorithm produces what they call BLOCKS: ungapped 
regions of aligned proteins [14]. For the parts of the long QT related 
proteins for which structural information is available, structure-based 
alignments were produced and were subsequently merged with the 
sequence-based MSAs.

Mutation data

Mutations were extracted from the literature by the 3DM Mutator 
module [13]. PubMed was queried for papers containing mutations 
related to the protein members of the two protein superfamilies here 
investigated. For the alpha-amylase superfamily Mutator scanned 
11,471 full-text papers, whereas mutation-related information for the 
potassium channel superfamily was extracted from 41,253 full-text 
articles. In total, this resulted in 5,219 and 65,891 mutations for the 
alpha-amylase and potassium channel superfamilies, respectively.

Results
We investigated the transferability of several types of information 

among members of protein superfamilies, and the power and limitations 
of automatically extracting mutation data from the literature.

Pathogenic variants tend to cluster at equivalent positions

The basic assumption that allows for the transfer of mutation 
data between protein family members is that mutations at equivalent 
positions in homologous proteins tend to result in similar structural 
and functional effects. Based on this assumption it is to be expected that 
structurally related proteins have equivalent locations where mutations 
are well tolerated and locations where mutations are prone to result in 
detrimental effects. We have tested this hypothesis by analyzing the 
pathogenic variants that were extracted from the literature by Mutator, 
in the two protein sets. None of the pathogenic variants are observed 
with a minor allele frequency of 1% or higher in the ExAC population 
database [15,16]. The first test set consists of 381 aligned pathogenic 
variants in four human proteins of the α-amylase superfamily (GLA, 
NAGA, GBE1, and SLC3A1) that, when mutated, can result in Fabry 
disease, Schindler- or Kanzaki disease, glycogen storage disease, or 
cystinuria, respectively. These proteins are sequentially very distantly 
related to each other. Sequence identities of these proteins range 
between 10% and 57% as shown in Table 1, which makes it (almost) 
impossible to align them correctly using sequence based alignment 
method that are normally used by the standard variant prediction tools 
(e.g. SIFT or PolyPhen [8,9]), but due to their similar protein structures 
they can still be aligned correctly (see Figure 1). The 381 pathogenic 
variants are observed at 158 structurally different positions. Figure 2 
shows how often pathogenic variants are observed at corresponding 
positions in these four proteins.

For our second test set, the four potassium channels, structural 
information is present only for a very small fraction of these proteins, 
which hampers the transfer of mutation data between these proteins. 
SCN5A and SCN1A are sequentially closely related and these two can 
reliably be aligned over nearly the full lengths of their sequences. However, 
KCNQ1 and KCNH2 can only reliably be aligned at 156 positions that 

Protein 1 Protein 2 Core identity Aligned positions Mutations protein 1 Mutations protein 2 Overlap P-value
GLA SLC3A1 0.15 210 150 37 31 0.046
GLA NAGA 0.57 209 149 8 8 0.062
GLA GBE1 0.10 194 140 12 8 0.787
GLA SLC3A1, NAGA - 210 150 45 39 0.006
GLA SLC3A1, NAGA, GBE1 - 210 150 57 47 0.021

KCNQ1 KCNH2 0.17 156 109 126 96 0.001
SCN5A SCN1A 0.73 1576 476 271 101 0.003

Table 1: The overlap of mutations between different diseases related proteins.
From left to right the columns show the two proteins of the comparison; the sequence identity of the aligned region; the number of aligned positions; the number of positions 
in both proteins at which pathogenic mutations have been observed, the number of those that overlap, and the p-value for the overlap to be random determined by a 
permutation analysis.
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are structurally conserved. This is the transmembrane region of these 
proteins. No structure data is available for SCN5A and SCN1A and these 
proteins can reliably be aligned to KCNQ1 and KCNH2 at only 29 of 
these 156 positions. Due to the absence of structural information and the 
limited number of mutation data for the four potassium channels, the 
significance of the overlap of mutation data could only be determined 
for SCN5A and SCN1A and for the 156 structural conserved positions 
of KCNQ1 and KCNH2. For these two datasets an even greater overlap 
is observed of positions that are disease related in both families. Table 1 
provides the numerical details of these analyses. 

Variation in close homologs is indicative of mutation-tolerant 
positions

It is commonly accepted that mutations at conserved positions are 
likely to be pathogenic, and many MSA-based software packages (e.g. 
SIFT; [9]) that aim at predicting the significance of mutations for a 

disease state implicitly use this concept. If an alignment consists only of 
highly similar sequences, then obviously most positions will be observed 
as conserved. If in a sequence alignment all sequences are more than 
90% sequence identical to the human sequence then obviously the MSA 
contains only sequences from species that are closely related to homo 
sapiens, and consequently, any variability observed in this MSA is likely 
to also be acceptable in the human sequence. To test this hypothesis, 
we compared the ratio of pathogenic variants at conserved positions 
with the ratio of pathogenic variants at non-conserved positions. To 
ensure that this test was statistically meaningful we only used two of the 
nine human proteins (one from each super-family) for which a large 
number of different pathogenic variants (>250) are available. Table 2 
shows that pathogenic variants are less frequently observed at variable 
positions in alignments composed of only highly similar sequences. For 
instance, for 179 of the 420 positions in the alignment of closely related 
GLAs pathogenic variants (stop codons and deletions excluded) have 
been reported in the HGMD database. The alignment composed of 
sequences that are at least 90% identical to GLA contains 387 conserved 
positions. For 176 (45%) of these positions pathogenic mutations have 
been described. For the variable positions this is five times less, because 
for only 3 of the remaining 33 variable positions (9%) pathogenic 
variants have been described. To determine the significance of the 
lower frequency of pathogenic mutations at variable positions a p-value 
was determined, which was <0.01 for all factor values from Table 2.

Mutation data extraction: automated mining outperforms 
manually curated approaches

HGMD [1] is the de facto standard source for mutation information. 
Like any manually curated database, the high quality of the HGMD 
comes at the cost of incompleteness. It was shown recently that Mutator 
is able to extend the HGMD [17]. Figure 3 show that Mutator extracts 
significantly more mutations from the literature than human experts. 
This does, of course, not invalidate systems like HGMD because the 
HGMD also provides details on the effect of a variant. Even though 
natural language parsing software is developing very rapidly the days 
that the successor of Mutator will also always correctly extract the effects 
of those mutations from the literature are not near. In contrast to the 
HGMD database that stores each unique mutation once, 3DM collects 
all publications that describe any particular mutation. This can, for 
example, be two publications that describe the same mutation detected 
in different patients with different onsets or different symptoms. We 

Figure 1: Structural alignment of subfamily representative structures for the 
four human proteins in the alpha amylase superfamily. 
GLA and NAGA are both represented by 1R47 chain B, SLC3A1 is represented 
by structure 2DH3 chain A, and GBE1 is represented by structure 1M7X 
chain A. The blue to green regions are considered structurally conserved 
while the gray regions are structurally variable in this alignment. The blue to 
green gradient visualizes the order of the conserved regions from the N- to 
C- terminus respectively.

Figure 2: The relation of pathogenic mutations of different homologous 
proteins and their corresponding diseases. 
Overlapping parts of the ovals represent equivalent protein positions and the 
numbers are the number of positions for which mutation data is detected. For 
instance, there are 31 positions for which pathogenic mutations have been 
detected in both GLA and SLC3A1 proteins. GLA KCNQ1

Identity factor p-value factor p-value
0.9 5.0 <0.001 2.24 0.0045

0.85 4.0 <0.001 2.25 <0.001
0.8 3.5 <0.001 2.07 <0.001

0.75 3.2 <0.001 1.98 <0.001
0.7 2.8 <0.001 2.07 <0.001

0.65 2.8 <0.001 2.00 <0.001
0.6 2.6 <0.001 1.91 <0.001

Table 2: The relation between pathogenicity of mutations at conserved positions 
versus variable positions.
The left column represent the sequence identity compared to the human sequence. 
The factor column indicates how much more often pathogenic mutations are found 
at 100% conserved positions than at variable positions. For instance, using an 
alignment composed of sequences that are 90% or more identical to GLA this 
factor is 5.0, which means that the percentage of conserved positions at which 
pathogenic mutations have been observed is 5.0 times higher than positions at 
which at least one of the aligned homologs has a different residue type than the 
human sequence. Clearly, human mutations are more easily tolerated at positions 
that are variable in highly related sequences. 
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have frequently observed that contradicting information is reported for 
the same mutation in different patients. 

Discussion
We have made a number of interesting observations. First, we find 

that variants are more likely to be pathogenic if they occur in structurally 
conserved regions of a protein [13]. Second, we find that it is much less 
likely that variants are pathogenic if they occur at positions that are 
variable in alignments composed of only highly similar proteins. From 
this observation follows that if a close homolog of a human protein 
has a different residue, it is more likely that other residue types are 
allowed at the equivalent position of the human protein. Third, we show 
that there is a large overlap in alignment positions where pathogenic 
mutations occur even among distantly related human proteins of a 
superfamily. Therefore, when a missense mutation is pathogenic to its 
host organism, the chance that a mutation at the equivalent position 
in a homologous protein (to any residue) is also pathogenic is much 
higher. These observations show, as was hinted at previously [10], that 
pathogenicity is much more determined by the location of the mutation 
in the protein than by the type of amino acid that is introduced. 
We can conclude that the use of protein superfamily systems can 
extensively add previously unused data for the investigation of human 
disease related variants. These revelations can function as very useful 
predictive features for variant effect prediction models. The availability 
of a protein superfamily data integration system is valuable for such 
a model, since it can provide predictive features that otherwise would 
be missing, such as mutation data for very distant homologs. In fact, 
these models have been generated for the LQT related genes. We show 
that the use of superfamily data largely increases the accuracy of variant 
effect predictions (publication in progress).
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