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Introduction
Parkinson’s disease (PD) is a debilitating condition of the brain 

characterized by gradual deterioration of motor functions due to the 
loss of dopaminergic (DA) neurons in the substantia nigra (SNc) of the 
mid brain. The exact cause of this cell death is still not clear. The first 
comprehensible medical description about PD was written in 1817 by 
an English physician James Parkinson in his work entitled “An Essay 
on the Shaking Palsy” [1]. However it was Jean-Martin Charcot and 
Alfred Vulpian who coined the name “Parkinson’s disease” by adding 
more symptoms to James Parkinson’s clinical description [2].

PD is the second most widespread neurodegenerative disorder after 
Alzheimer’s disease (AD). Nonetheless, appraisals of occurrence and 
predominance differ widely around studies; this is due to the differences 
in the methodologies used. The occurrence of PD reported by studies 
representing all age gatherings ranged from 1.5 and 22 for every 100,000 
man years. This rate may be higher when recognizing just populations 
over the age of 60 [3]. Approximately 1–2 % of the population over 65 
years suffers from PD. This estimate increases to 3 % to 5 % in people 
85 years and older [4]. In some rare cases, PD-like symptoms has been 
observed in youngsters. Epidemiological studies have also shown that 
the occurrence and prevalence of PD are 1.5 to 2 times more in men 
than in women [5]. Future epidemiologic investigations of PD ought 
to be broad, incorporate definite quantifications, and gather data on 
natural exposures and hereditary polymorphisms. One of the most 
important questions put forth by the neurobiology of aging apprehends 
the pathogenic mechanisms causing PD. Age and gender has always 
been the cardinal risk factors in PD. However, various studies have 
shown that exposure to pesticides could be the main cause of PD [6]. 
An alternative explanation is the genetic component, which has been 
suggested to be an important risk factor. Epidemiological studies have 
identified a positive family history of Parkinson as one of the most 
important risk factors for the disease. 

The substantia nigra of the midbrain contains the dopaminergic 
neurons which produce dopamine. Dopamine is a neurotransmitter 
responsible for coordinating movements. In Parkinson’s disease, there 
is a severe depletion in the levels of dopamine due to the degeneration 
of dopaminergic neurons. This results in the lack of control over 
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body movements [7]. The symptoms of PD have a gradual onset and 
usually develop simultaneously with the progression of the disease. 
The symptoms tend to worsen over time; if left untreated, it may lead 
to disability with associated immobility and falling. The early classic 
symptoms of PD include motor symptoms like postural instability, 
resting tremor, bradykinesia, and rigidity [8]. The above symptoms are 
related to progressive loss of nigrostriatal dopamine and are usually 
corrected by treatment with Levodopa or dopamine agonists [9]. 
Nevertheless, as the disease progresses, symptoms that fail to respond to 
Levodopa develop [10]. Although the motor symptoms lead the clinical 
picture of PD, some patients are also associated with a range of non-
motor symptoms like sleep, sensation, autonomic, mood disturbances 
as well as cognitive disturbances like dementia [11]. These symptoms 
have a severe impact on the patient’s quality of life [12]. However, there 
is a considerable amount of heterogeneity among the individuals during 
the course of the disease. 

Existing treatments for PD

Although less effective in the advanced stage of the disease, 
medications are available to control the symptoms of PD. Amongst them, 
Levodopa continues to be the most effective treatment for PD [13]. But 
this treatment is coupled with complications in motor activities such as 
dyskinesias, wearing off, and ‘on-off ’ phenomenon [14,15]. One recent 
study has reported that reported that levodopa intake in dyskinetic 
patients seem to alter the functioning of some parts of the neural 
network implicated in motor inhibition [16]. Another viable option at 
this stage is deep brain stimulation, although some patients meet the 
necessity for surgery. New medications that offer better control over the 
symptoms stay on developmental demand. However, both genes-as well 
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as cell–based therapies have shown guarantee in early clinical studies 
[17]. A key need yet to be fulfilled is a treatment that stops or at least 
slows down the progression of the disease.

Pathological Hallmarks of PD

The archetypal pathological characteristic of PD involves the loss 
of the dopaminergic neurons. The DA neurons of the substantia nigra 
contains conspicuous amount of neuromelanin [18]. The loss of these 
neurons produces the depigmentation found in the substantia nigra of 
PD patients. The depletion of DA neurons is most prominent in the 
dorsolateral putamen [19]. At the beginning of the symptoms, ∼80 % of 
putamenal DA is degenerated, and ∼60% of SNc dopaminergic neurons 
has been lost. The pattern of SNc cell loss appears to be similar to the 
expression of the DA transporter (DAT) mRNA [20]. However, the DA 
neurons, which reside in the neighboring ventral tegmental area (VTA), 
are least affected in PD [21]. The other pathological characteristic 
that is classic of PD is the occurrence of intraneuronal proteinacious 
cytoplasmic inclusions, termed “Lewy Bodies” (LBs) [22]. The 
α-synuclein in the LBs is misfolded, post-translationally modified and 
ubiquitinylated. LBs comprise of a heterogeneous combination of more 
than 90 molecules, comprising PD-linked gene products (α-synuclein, 
DJ-1, LRRK2, Parkin, and PINK-1), mitochondria-related proteins, 
and molecules implicated in the ubiquitin-proteasome system (UPS), 
autophagy, and aggresome formation [22]. These interfere with the 
mechanisms of microtubule-based subcellular transport, thereby 
causing synaptic dysfunction and other disruptions to neuronal 
homeostasis [23]. Several studies have shown that LBs are being 
constantly formed as the disease advances and they disappear when 
the neuron dies [24]. Reports have indicated that fibrillar aggregates 
of α-synuclein (LBs and pale bodies) may represent a cyto-protective 
mechanism in PD [25]. Lewy bodies thus offer a diagnostic marker and 
are extremely important for the pathological diagnosis.

Possible Pathways involved in the pathogenesis of PD

Before the discovery of genes causing monogenic types of PD, several 
intriguing speculations have shown that different molecular pathways 
are involved in the propagation of PD pathogenesis. Accumulating 
evidences have confirmed that mitochondrial dysfunction, impairment 
of the ubiquitin proteasome system and oxidative stress may perhaps 
represent the prime molecular pathways that generally lie beneath the 
pathogenesis of both sporadic and familial forms of PD [26-28]. In 
addition to this, inflammation and loss of neurotropic factors have also 
been shown to play a major role in the progress of PD.

Inflammation

The steady findings acquired by different animal models of 
PD suggest that neuro-inflammation is an essential patron to the 
pathogenesis of PD and may further impel the progressive loss of 
nigral dopaminergic neurons. Although not the primary cause of PD, 
exaggerated inflammatory responses caused by glial reactions [29], T 
cell infiltration [30] and increased expression of inflammatory cytokines 
are presently recognized as major characteristics of PD. Increased 
levels of pro-inflammatory cytokines such as tumour necrosis factor-a 
(TNFα), interleukin-1β (IL1β), IL6, inducible nitric oxide synthase (i 
NOS) and cyclooxygenase 2 have been found in the substantia nigra of 
PD patients [31, 32]. This might be due to the activation of microglia 
in that region. Research has shown that inflammatory mediators like 
(IL1β) promote the aggregation of α-synuclein [33]. In addition to this, 
activated macrophages have been shown to increase the nitrosylation of 
α-synuclein in the neuronal cells [34].

Excitotoxicity

In spite of the specific ultra-structural findings connected with 
dynamic excitotoxic degeneration; there are no specific pathological 
characteristics of excitotoxicity. However, there is a decline in the 
glutamate receptor in the PD brain [35], thus proposing that neurons 
expressing these receptors are susceptible to neurodegeneration. 
Moreover, neurotoxins such as MPTP, 6-hydroxydopamine and 
methamphetamine used to model PD exert their toxic effects through 
the stimulation of excitotoxic glutamate receptors [36]. Increased 
calcium influx also plays a crucial role in excitotoxicity in PD [37].

Impairment of the Ubiquitin-proteasome system (UPS)

Cellular homeostasis is maintained by all cells by continually 
degrading proteins, with proteolysis. This occurs in a manner that is 
both highly specific and highly regulated. The ubiquitin proteasome 
system (UPS) is crucial for intracellular protein homeostasis and for 
degradation of aberrant and damaged proteins [27]. The UPS specifically 
targets individual proteins, comprising short-lived, damaged or 
defectively folded proteins, which accounts for about 80–90 % of all 
intracellular proteins [38]. The accumulation of ubiquitinated proteins is 
a hallmark of many neurodegenerative diseases, including amyotrophic 
lateral sclerosis, Alzheimer’s, Parkinson’s, and Huntington’s disease, 
leading to the hypothesis that proteasomal impairment is contributing 
to these diseases [39]. Rising proof propose that impairment of the 
ubiquitin-proteasome system may additionally be involved in the 
pathogenesis of familial and sporadic types of PD [40]. In accordance 
with this idea, there has been structural and functional dearth in the 
20/26S proteasome in the substantia nigra of sporadic PD patients [41]. 
The accumulation of cytotoxic proteins such as α-synuclein, in Lewy 
bodies (Lbs) in DA neurons in sporadic PD unequivocally suggests 
protein misfolding and consequent proteolytic stress, which perhaps 
imply impaired UPS function [42]. α-synuclein functions by inhibiting 
the 20/26S proteasome thereby causing UPS dysfunction [43]. 
Moreover, mutations in the Parkin gene have also been shown to cause 
impairment in UPS pathway with ensuing proteolytic stress owing to 
abnormal protein aggregation, which might result in the inevitable 
death of DA neurons [44].

Oxidative Stress in PD

Oxidative stress is an alternate possibly vital pathway that 
could be involved in the development of PD-like pathology in the 
neurons. Numerous evidence from post-mortem studies revealed the 
involvement of oxidative stress in PD pathogenesis [28]. Oxidative stress 
may quicken as the disease progresses, and it is involved in a segment of 
the pathogenesis underlying the progressions of PD. Mitochondria are 
the source of Reactive oxygen species (ROS) production [45]. Defects 
in complex 1 of the respiratory chain has been known to cause the death 
of dopaminergic neurons through decreased synthesis of adenosine 
triphosphate (ATP) and increased production of ROS, thereby leading 
to oxidative DNA damage [46] consequently setting off an endless loop 
between mitochondrial dysfunction and oxidative stress. In addition to 
this, levels of both free and bound nitrotyrosine, a steady indicator of 
the association of Reactive nitrogen species (RNS), have been shown 
to be increased in the affected zones of the MPTP mouse model of 
PD [47]. Among the ROS-scavenging enzymes, superoxide dismutase 
(SOD) is frequently viewed as the first line of resistance against a ROS 
rise. In the post-mortem PD brains, an increase in the mitochondrial 
isoform of super oxide dismutase 2 (SOD2) was observed [48]. The 
latter observation is quite interesting since SOD2 is highly inducible 
in response to an excess of ROS [49]. In addition, some reports have 
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singled out dopamine as potentially being the primary culprit in the 
death of dopaminergic neurons [50]. Dopamine is an extremely 
reactive molecule inclined to easy oxidation. On being oxidized, it can 
react with several cellular components producing increased amount of 
ROS [51].

Mitochondrial dysfunction in PD

Mitochondria play a cardinal role in the apoptotic pathway [52]. 
Opening of the mitochondrial permeability transition pores occur 
under conditions of oxidative stress leading to the failure of the 
mitochondrial membrane potential. Mitochondrial dysfunction may 
consequently retune the threshold for the activation of apoptotic 
pathways. An excess in apoptosis has been shown to participate in 
unwarranted acute or chronic cell loss in neurodegenerative diseases. 
Mitochondrial dysfunction plays a key role in the pathogenesis of PD 
[53]. Substantial evidence has shown that sporadic and familial variants 
of PD have common pathways that unite at the mitochondria [54]. 

Transport of electrons through complexes I–IV in the inner 
mitochondrial membrane involves a series of coupled redox reactions, 
which provide the energy to create a proton gradient across the inner 
mitochondrial membrane. Complex I is the central gateway for electrons 
to enter the respiratory chain. The source of complex I deficiency in 
PD are not well understood. It has been advocated that mutations in 
complex I genes in the mitochondrial genome can cause dysfunction 
in complex I activity, assembly and/or stability [55]. Many studies on 
complex I inhibition and ROS formation have been performed with 
rotenone, an inhibitor of complex I that binds in proximity to the 
quinone-binding site [56]. The link between mitochondrial dysfunction 
and Parkinson’s disease became evident with the discovery of MPTP in 
the early 1980’s. MPTP has been shown to inhibit complex 1 activity 
thereby causing the death of DA neurons [57]. Several epidemiological 
studies have proposed that MPTP and other complex 1 inhibitors 
like the pesticides rotenone and paraquat are implicated in sporadic 
PD [57]. When administered MPTP and paraquat cause aggregation 
of α-synuclein in the non-human primates and in mice [58, 59]. In 
accordance with this data, some evidences have shown that mice that 
lack α-synuclein are resistant to the effects of MPTP, while, transgenic 
mice overexpressing α-synuclein show increased susceptibility [60,61]. 
Mitochondrial dysfunction and complex 1 deficiency have been shown 
to impair striatal dopamine homeostasis due to depletion in the level 
of ATP, thereby leading to reduced vesicular uptake of dopamine and 
enhanced cytosolic dopamine metabolism [62]. Many pro-apoptotic 
mitochondrial proteins, for example, cytochrome c and apoptosis 
initiating factor (AIF), and their redistribution to the cytosol and 
nucleus throughout neuronal cell demise in vitro and in vivo have been 
extensively reported [63]. Many factors are capable of triggering the 
release of pro-apoptotic proteins from mitochondria, including elevated 
Ca2+, ROS, ceramides, and other cell death proteins [63]. While much 
has been documented about the role of ROS, Ca2+ in PD, the role 
of sphingolipid metabolites like ceramides(Cer) and sphingosine-1-
phosphate (S1P) in neurodegenerative diseases ( like PD) is still not 
known.

Role of Sphingolipids in the Pathogenesis of PD 
Lipids in the CNS

Lipids are gaining increasing importance with respect to their roles 
in the CNS. Deregulated lipid metabolism has been reported in several 
CNS disorders and injuries. Lipid peroxidation leading to oxidative 
stress has been reported in neurodegenerative diseases like Alzheimer’s 

disease and Parkinson’s disease [64]. Lipids encompass a large number 
of chemically different molecules arising from combinations of fatty 
acids with different backbone structures. Mammalian cells contain 
more than 1000-2000 lipid species. In general, lipids are classified into 
eight different categories. They are glycerolipids, glycerophospholipids, 
sphingolipids, fatty acyls, prenol lipids, sterol lipids, saccharolipids, and 
polyketides [65]. In particular, great strides have been made in order to 
understand the mechanisms by which sphingolipids regulate numerous 
cellular processes in the CNS.

Sphingolipids (the enigmatic class of Lipids)

 Sphingolipids consists of eighteen carbon amino-alcohol backbones 
which are synthesized in the endoplasmic reticulum (ER) from non-
sphingolipid precursors. This vast family of lipids plays important roles 
in membrane biology and offer many bioactive metabolites that regulate 
cell functions [66]. These compounds have numerous roles, such as 
regulating signal transduction pathways, directing protein sorting, and 
mediating cell-to-cell interactions and recognition functions [67, 68]. 
Cer and S1P are the two major sphingolipid metabolites which have 
diverse biological functions.

De novo synthesis of sphingolipids begins at the cytoplasmic side of 
the ER. It is instigated by the condensation of serine and palmitate to 
generate 3-keto-sphinganine catalyzed by serine palmitoyltransferase 
[69].3-keto-sphinganine is further reduced to sphinganine (dihydro-
sphingosine, DHS) in two rapid enzymatic reactions by 3-keto-
sphinganine reductase. DHS is then N-acylated by dihydroceramide 
synthase by means of various fatty acyl CoAs to form dihydroceramide 
(DHCer) which is then converted to Cer by a desaturase. Cer is later 
translocated from the ER to the Golgi apparatus in a non-vesicular 
transport approach by ceramide transport protein (CERT) [70], a 
protein which contains a phosphatidylinositol-4-phosphate-binding 
domain and a recognized catalytic domain which aids in lipid transfer. 
Cer and DHCer are later used up by the enzyme sphingomyelin 
synthase to form sphingomyelin (SM) and dihydrosphingomyelin 
(DH-SM) respectively [71]. Inside the Golgi lumen, GlcCers are 
further converted to lactosylceramides and glycosphingolipids [72]. 
The other major metabolite sphingosine (Sph) is formed from Cer 
by ceramidase-catalyzed hydrolysis. Sph can also be produced during 
degradation of plasma membrane glycosphingolipids and SM in the 
endocytic recycling pathway. Sph and DHS are usually phosphorylated 
by Sphingosine kinases (SphKs) to form S1P and dihydro-S1P, which 
are the substrates for S1P phosphatases which reside in the ER [72].

Sphks and S1P in the Brain

The brain has profuse concentration of S1P when compared to the 
other organs [73]. During pathological conditions, the concentration 
of S1P further increases [74]. There have been conflicting reports as to 
which one of the two Sphk isoforms mainly produces S1P in the brain. 
Although several reports have depicted Sphk1 to be the major isoform 
in the brain tissue, recent reports indicate that both the isoforms 
are substantially present in the CNS. This is evident from a report 
showing that neither of the Sphk knockdown mice displays a notable 
CNS phenotype. However, the double knock down of SphK1–SphK2 
in mice showed a striking brain defect [75, 76]. FTY720 is a potent 
S1P receptor agonist that is phosphorylated in vivo by Sphk2 [76]. In 
experimental allergic encephalitis models, phosphorylated FTY720 
restores nerve function by affecting the BBB and glial repair mechanism 
[77]. FTY720 has also been shown to be a potential therapeutic drug 
for multiple sclerosis and is presently in phase 3 clinical trials [78]. S1P 
also plays an essential role in the motility of glioblastoma cells [79]. 
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Current evidence has shown that sphingosine kinases have the ability 
to modulate the production of amyloid β precursor protein by the SH-
SY5Y neuroblastoma cells.

S1P receptors in the CNS

In spite of the CNS having the highest concentration of S1P 
receptors, not much is known about the function of S1P; S1P has been 
shown to promote the excitability of cultured Dorsal root ganglion 
(DRG) neurons which is mediated via S1P receptors. Blocking of 
these receptors abolished these effects [80]. Previous research has 
shown that nerve growth factor (NGF) prompts the translocation of 
SphK1 to the plasma membrane which inturn leads to the activation 
of S1P1 resulting in Rac activation and neurite extension [81]. S1P2 
knockout mice have been shown to exhibit occasional seizure activity 
[82]. In addition, research has shown that S1P2 knockout mice are 
deaf and display a progressive loss of vestibular function [83, 84]. 
S1P has been shown to potentiate depolarisation-induced glutamate 
release in hippocampal neurons which was dependent on Sphk1 and 
S1P1 receptors, suggesting for its possible role in synaptic plasticity 
[85]. Moreover, S1P induces migration of transplanted neural stem/
progenitor cells to the injury site through its receptor S1P1 in spinal 
cord injury [86]. S1P plays a main role in the growth and survival of 
oligodendrocytes [87]. The S1P receptor S1P5 is selectively expressed 
only in the oligodendrocytes. This receptor enhances the survival 
of mature oligodendrocytes by mediating the process retraction 
of the oligodendrocyte precursors and [88]. In addition to this, the 
receptor S1P1 has also been shown to be involved in the proliferation 
of oligodendrocyte precursors. Hence, it seems likely that both S1P1 
and S1P5 function differently in the development of oligodendrocytes 
[89]. Astrocytes (the major type of glial cells in the CNS) have been 
shown to express S1P1, S1P2 and S1P3 receptors [90]. S1P1 receptor 
agonists have been shown to potentiate astrocyte migration. The 
receptors S1P1, S1P2, S1P3, and S1P5 were all been shown to be 
expressed by microglia. However, S1P3 expression in the microglia 
was lost after 2 weeks in culture [91]. 

Role of Sphks and S1Ps in Neurodegenerative Disorders

Sphks and S1P play a major role in maintaining a delicate balance 
between neuronal survival and death. In recent years, the roles of Sphks/
S1P in neurodegenerative disorders are gaining increasing importance. 
Disturbed sphingolipid metabolism has been reported in AD [92]. One 
study has shown that SphK2 is up-regulated in the brains of AD patients, 
via the modulation of BACE-1 activity through its metabolite S1P 
[93]. Furthermore, Aβ treatment of SH-SY5Y cells resulted in a strong 
inhibition of SphK1 activity coupled with an elevation of the ceramide/
S1P rheostat [94]. Another study has revealed that SPHK1/S1P1 
signaling axis plays an essential role in the proliferation of astrocytes 
thus protecting hippocampal neurons from kainic acid-induced 
neurodegeneration [95]. Furthermore, Sphk1/S1P receptor signaling 
has a control over the proliferation of glial cells in mice with Sandhoff 
disease [96]. Deletion of Sphk2 has been shown to increase the lesion 
size and affects neurological function in an experimental stroke model 
[97]. While Sphk2 has always been considered as a “villainous gene” 
promoting cell death, the above study throws light on the protective 
effect of Sphk2/S1P signaling in the brain. Changes in sphingolipid 
metabolism have also been reported in other neurological disorders 
like HIV dementia, brain ischemia, hypoxia and inflammation [98, 
99]. Although the general view for Sphingolipid in neurodegeneration 
seems more consistent, the role of these inexplicable category of lipids 
in the pathogenesis of PD still remains an enigma.

S1P and Sphks in PD Pathogenesis

Den Jager in 1969 reported that Sphingomyelin accumulated 
inside the Lewy bodies in PD pathogenesis. Although, these studies 
have shown that sphingolipids could possibly play a role in PD. There 
has been a dearth in the information on the role of these enigmatic 
compounds in PD pathogenesis since then. It was only recently that 
emerging data on sphingolipids have shed light on the protective role 
of these lipids in the pathogenesis of PD. A recent study has reported 
that inhibition of Sphk1 in the SH-SY5Y cells reduced the cell viability 
and concurrently increased the reactive oxygen species (ROS) level in 
an in vitro model of PD [100]. In addition to this, our recent study has 
revealed that Sphk2, the second isoform of Sphks and its metabolite 
S1P has a potential role to play in the pathogenesis of PD by protecting 
the neurons from mitochondrial dysfunction induced by MPTP insult 
[101]. Our study has revealed the significance of Sphk2 alteration in 
the pathogenesis of MPTP - induced PD mouse model. This appears 
to be the first report to study the role of Sphk2/S1P signalling in the 
pathogenesis of PD. Nonetheless, the signalling mechanism through 
which S1P offers protection to the mitochondria still remains unknown. 
On this note, it would be reasonable to state that Sphks, S1P and their 
analogs could aid as prospective therapeutic targets in the treatment of 
PD. However, further studies are warranted in order to understand the 
underlying mechanisms by which these molecules function in order to 
take these studies to the next phase.

Conclusion 
 The remarkable ability of these simple sphingolipids to regulate 

numerous processes in the CNS sheds light on the fact that these lipids 
have a pivotal role in neuronal function. The ability for high potency 
signaling molecules such as S1P to protect neurons from MPTP insult 
appears to be firming the case for therapeutics targeting the SPHK-
S1P signaling system in PD. Future, studies targeting the co-ordinated 
regulation of these molecules and related metabolites through 
transcriptomic, and lipidomic approaches will enhance our overall 
understanding of these inexplicable compounds.
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