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Editorial
Solar energy is converted to chemical energy and stored as

assimilates through a phenomenon called photosynthesis. Plant leaves
function as the principle site of resource acquisition by utilizing the
free energy captured via photosynthesis for the reductive assimilation
of oxidized forms of carbon into carbohydrates. Photosynthetic carbon
fixation provides vital energy for metabolism and precursors for all
other biosynthetic pathways in the plant. Most of these precursors are
required for biosynthesis of amino acids that form the building blocks
for many compounds in plants. The regulation of assimilate
partitioning in leaves is considered as allocation of carbon between
sucrose and starch synthesis, storage, and export, and carbohydrate
metabolism [1,2]. Sucrose is the most important metabolite in this
system of resource allocation because it is generally the major end
product of photosynthetic carbon metabolism and, in most plants it is
the predominant form of carbon transported to the heterotrophic
tissues [3-5]. Sucrose allocation between tissues is a fundamental
process in all multicellular organisms. Indeed, as much as 80% of the
carbon acquired in photosynthesis is transported in the plant’s vascular
system to import-dependent organs [6].

Moreover, in many plants, energy-dependent sucrose accumulation
in the phloem generates the high hydrostatic pressure that drives the
long-distance flow of resources. The systemic distribution of
photosynthate is known as assimilate partitioning, and it is a major
determinant of plant growth and productivity [7]. Our understanding
of assimilate partitioning has advanced considerably over the last 30
years with the successful biochemical and molecular descriptions of
several proteins that participate in this essential process (e.g. [8-11]).
The current concept of phloem transport comprises three steps: (i)
loading of photosynthates into the sieve element companion cell
complex (se-cc complex) of minor veins in exporting leaves, (ii)
translocation from source to sink, and (iii) unloading in growing or
storing sinks [12].

Active transport by specific carriers across the apoplast, and
symplastic transport via plasmodesmata, has been discussed as
possible mechanisms for sucrose transport [13]. The transport is active
and has been described as a sucrose-proton co-transport with a 1:1
stochiometry [14].

Sink or source regulated modification of sucrose partitioning in
plants is speculated to be a good strategy either for enhancing yield
performance and improving plant-stress interactions, and for
unravelling the biochemical, physiological and molecular mechanisms
underlying sucrose partitioning in plants. To this end, modification
could be achieved in two ways: (i) external treatments such as leaf
girdling by hot wax collars to prevent export of assimilates from the
leaves [15] or such as defoliating [16], or (ii), in vivo molecular
manipulation [17,18]. In regard to the latter, one of the molecular

candidates for increasing or decreasing sink and source strength
through intervention with assimilate loading or unloading is sucrose
transporters. Another powerful tool for studying sucrose metabolism
and sink/source interactions is apoplastic invertase, as it cleaves
sucrose into the monosaccharide glucose and fructose [19].

Using sucrose proton co-transporter antisense lines, [13] showed
clear evidence for an essential role of the sucrose transporter in
phloem loading and assimilate partitioning. The antisense plants
strongly support an apoplastic model for phloem loading, in which the
sucrose transporter located at the phloem plasma membrane
represents the primary route for sugar uptake into the long distance
distribution network. Invertase cleaves sucrose into glucose and
fructose. A range of studies supports the hypothesis that the primary
function of invertases is to supply carbohydrates to the sink tissues
[20,21].
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