
Review Article Open Access

Clinical Pharmacology 
& Biopharmaceutics 

Anand and Sugaya, Clin Pharmacol Biopharm 2014, 3:2 
DOI: 10.4172/2167-065X.1000126

Volume 3 • Issue 2 • 1000126
Clin Pharmacol Biopharm
ISSN:  2167-065X CPB, an open access journal 

Stem Cell Approaches for Treatment of Neurodegenerative Diseases
Saurabh Anand and Kiminobu Sugaya*

Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, USA

Keywords: Pyrrolopyrimidine; Stem cell proliferator;
Neurodegenerative diseases; Neural stem cells

Abbreviations: Aβ: Amyloid-β peptide; AD: Alzheimer Disease;
ALS: Amyloid Lateral Sclerosis; APP: Amyloid Precursor Protein; 
(BBB): Blood-Brain Barrier; DA: Dopaminergic neurons; FGF: 
Fibroblasts Growth Factor; HD: Huntington Disease; L-DOPA: Laevo- 
3,4 dihydroxyphenylalanine; MAPK: Mitogen Activated Protein Kinase; 
MS-818: 2-piperadino-6-methyl-5-oxo-5, 6-dihydro (7H) pyrrolo [2,3-
d] pyrimidine maleate; NGF: Nerve Growth Factor; NMDA: N-methyl-
D-aspartate receptors; NPC: Neuronal Precursor Cells; PD: Parkinson
Disease; ZFX: Zinc Finger and X-linked transcription factor

Introduction
The nervous system and brain via a well-orchestrated network of 

electrical signals control the basic activities e.g. muscle movement, 
senses, speech, memories, thoughts, and emotions in humans. There 
are many forms of nerve diseases that in humans limit these functions 
in different ways. Neurodegenerative diseases are the result of the 
phenomenon of neurodegeneration which is an umbrella term used 
for the progressive structural and functional impairment of neurons 
eventually resulting in their death [1]. Acute neurodegeneration could 
result from stroke or trauma leading to damage and death of neurons 
at the site of injury, whereas chronic form develops over age and might 
result in loss of specific neuron subtype (e.g. in Parkinson Disease) or 
generalized population (e.g. in Alzheimer’s Disease and Huntington’s 
Disease) [2-5]. The different neurodegenerative diseases including 
Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s 
disease (HD), and Amyotrophic Lateral Sclerosis (ALS) etc. reveal 
similarities including accumulation of insoluble protein aggregates, 
apoptosis, compromised communication system etc. at the cellular level 
[6-10]. With high morbidity and mortality rates, these diseases have 
a huge social and economical impact [11]. According to Alzheimer’s 
association the number of people affected with Alzheimer’s disease in 
US alone is expected to triple in 2050 to a figure of ~16 million, costing 
$1.2 trillion in health care, long-term care and hospice care [12]. 
Not to mention that the emotional impact all of the aforementioned 
age-related disorders have on patients and their caregivers is hard to 
estimate and express in words. Unraveling the molecular mechanism 
underlying these complex diseases through scientific investigation 
would lay foundation for therapeutic intervention towards long-term 

goal to ameliorate and cure them [13]. We understand that these areas 
of research are vast and fast growing; the purpose of this review is to 
evaluate some of the currently available stem cell transplantation and 
pharmacological approaches and suggest a new class of compounds 
increasing stem cell populations as a safer and noninvasive approach 
for treatment of a few selected neurodegenerative diseases. 

Conventional Pharmacological Approach
Alzheimer’s disease (AD) considered to be a protein misfolding 

disorder damages and kills neurons and is believed to result from a 
combination of genetic, lifestyle, and environmental factors [14]. The 
two hallmarks of Alzheimer’s: 1) accumulation of plaques made up 
of small peptides of beta-amyloid which is a fragment resulting from 
aberrant cleavage of amyloid precursor protein (APP) damages neurons 
by interfering with the communication system (8) 2) Neurofibrillary 
tangles which are made up of abnormally twisted hyperphosphorylated 
tau proteins causing damage and death of neurons by interfering 
with their transport system [3,14]. The common conventional 
therapeutic approaches include use of cholinesterase inhibitors by 
delaying the degradation of acetylcholine released from the synapse 
[15]. The N-methyl D-aspartate (NMDA) receptor antagonist named 
memantine or Namenda (generic) work on the glutamatergic system 
by blocking NMDA receptors and is another commonly used drug 
to alleviate the symptoms of AD [16]. Other conventional drugs are 
based on reducing Aβ production by modulating secretase activity, 
reducing Aβ aggregation, promoting Aβ clearance, targeting tau 
phosphorylation and assembly, immunotherapy against Aβ, altering 
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metal ion’s interaction with beta-amyloid, oxidative stress etc. [17-27]. 
Cholinesterase inhibitors and NMDA receptor antagonists provide 
symptomatic relief to patients but fail in curing the underlying disease 
[28]. The conventional drugs targeting Aβ and tau failed in phase III 
clinical trials [23]. Parkinson’s disease (PD) results from the death of 
dopamine producing cells in substantia nigra region of the midbrain 
[29]. The damaged neurons have been found to abnormally accumulate 
alpha-synuclein bound to ubiquitin not allowing the complex to be 
directed to proteasome for degradation, eventually accumulating 
proteinaceous cytoplasmic Lewy bodies [30]. Carbidopa/Levodopa 
or L-Dopa (Sinemet) is the most potent and effective conventional 
medication for PD [31]. However, the use of L-DOPA was discontinued 
due to movement problems (motor fluctuations) including dyskinesias, 
wearing-off effect, distonias, etc. Many other dopamine agonists 
stimulating parts of the brain influenced by dopamine have also 
been used on patients [32,33]. Other anticholinergics decreasing the 
activity of acetylcholine regulating movement are helpful for tremors 
[34]. MAO-B inhibitors used for the treatment block enzymes in the 
brain that are responsible for breaking down dopamine [35]. They 
are used to make levodopa last longer or reduce the amount required. 
When selegiline (Eldepryl, Zelapar) is taken with levodopa, it results in 
dyskinesias, hallucinations etc. [36]. Rasagiline (Azilect) when taken 
without levodopa may result in headache, joint pain, indigestion, 
depression etc. [37]. COMT inhibitors on the other hand representing 
the newer class of drugs for PD inhibit the action of catechol-O-methyl 
transferase, an enzyme involved in degrading neurotransmitters. 
They have no direct effect on PD symptoms but have been found to 
prolong the effect of L-Dopa by blocking its metabolism [38]. Two of 
the pharmaceutical examples tolcapone and nicetapone were found to 
be toxic to the liver [39]. All of these drugs help alleviate the symptoms 
of PD but none of them have yet been able to cure or reverse the 
effects of the disease. Huntington’s disease (HD) is an inherited disease 
caused by a mutated form of the huntingtin gene where excessive CAG 
repeats result in formation of an unstable and aggregation-sensitive 
protein causing the progressive degeneration of GABAergic medium 

spiny neurons (MSNs) in the brain [5,40]. It affects patient’s abilities to 
perform basic functions usually resulting in movement, cognitive, and 
psychiatric disorders. The current drugs help manage the symptoms but 
cannot prevent the degeneration or cure the disease. Several drugs to 
treat movement disorders e.g. Tetrabenazine (Xenazine), antipsychotic 
drugs, antidepressants, and mood-stabilizing drugs are currently being 
used in patients with HD [41]. Amyotrophic lateral sclerosis (ALS) 
or Lou Gehrig’s disease specifically affects motor neurons eventually 
resulting in their death. As a result, the brain’s ability to initiate and 
control muscle movement is lost [42]. Riluzole (Rilutek) is the only 
FDA approved drug for ALS. It slows down the disease’s progression 
possibility by decreasing high levels of glutamate seen in ALS patients. 
This too causes side effects including dizziness, gastrointestinal 
complications, and abnormalities in liver function [43]. Another 
drug named Retigabine, an anticonvulsant, originally recommended 
for epilepsy, is a potassium channel opener, has recently been shown 
promising for ALS. Several adverse effects including drowsiness, 
dizziness, slurred speech etc. were noticed in phase II clinical trial for 
epilepsy; the side effects of this drug in ALS patients are currently under 
investigation [44].

Stem Cell Transplantation Approach
Stem cell therapy has been proven to be promising for treatment 

of several human diseases [45,46]. The use of embryonic stem cells 
(ESC) and fetal stem cells (fetal proper stem cells and extra-embryonic 
fetal stem cells) for stem cell research faced several ethical issues in 
the past [47]. Induced pluripotent stem cells (iPSC) on the other hand 
are adult cells that have undergone reprogramming to an embryonic 
stem cell-like state by expression of genes responsible for maintaining 
the characteristics of ESCs [48]. IPS technology has broad scope of 
application possibilities as the adult cells can be isolated, differentiated 
into cells of interest in the plate, and injected back to the same patient, 
thus avoiding the complications of rejection post transplantation 
(Figure 1) [49]. Though adult stem cells are found in all the organs and 
theoretically can differentiate into different cell types, the differentiation 

Figure 1: Schematic representation of stem cell approach for treatment of diseases.
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potential exhibited by them is limited. Since patients suffering from 
neurodegenerative diseases exhibit different neuronal pathologies and 
complications, deciding on the course of treatment using stem cell 
therapy involve many considerations [46,50]. The treatment objectives 
in these cases have been centered on replacing damaged or dead 
neurons with new ones and/or augmenting the brain environment by 
using engineered stem cells expressing brain-derived growth factors 
[51]. Neural stem cells (NSCs) are a population of adult cells with self-
renewal and differentiation capacities. A major focus has been to use 
NSCs to combat age-related neurological disorders [52]. When NSCs 
were injected into the hippocampal area of the brain of transgenic AD 
mouse model, the cognitive function improved with no change in the 
Aβ plaques or neurofibrillary tangles [53]. Interestingly, in 3xTg-AD 
mice, which develop both amyloid and tangle pathology, the clearance 
of intraneuronal Aβ plaques by immunotherapy rescues the cognitive 
impairment. However, the reemergence Aβ pathology in antibody-
treated mice again results in cognitive deficits [54]. 

It was also seen in the study that the improved cognition was a result 
of increased brain-derived neurotrophic factor (BDNF) [53]. The high 
levels of APP in the brain not only reduce NSCs, but also increase glial 
differentiation of transplanted stem cells, hence negatively affecting the 
outcome of therapy [55]. We previously showed significantly high levels 
of neurogenesis from transplanted NSCs in APP transgenic mice when 
APP level was reduced upon phenserine treatment [56]. Several research 
studies on expression of growth factors like vascular endothelial growth 
factors (VEGF), brain-derived neurotrophic factors (BDNF), nerve 
growth factor (NGF) etc. have shown these to have neuroprotective 
effects [57-60]. Since PD results from progressive death of dopaminergic 
neurons (DA) neurons, stem cell therapy is focused on replacing the 
same in substantia nigra of the brain. Studies show functional recovery 
upon grafting both embryonic stem (ES)- and mesenchymal stem cells 
(MSC)-derived DA neurons into rat PD model [61,62]. Transplantation 
of stem cells engineered to produce growth factors like BDNF, VEGF, 
GDNF etc. have been shown to protect DA neurons and functional 
recovery in transgenic PD models [62,63]. As HD results from loss of 
GABAnergic neurons, cellular therapies used are based on replacing 
dead neurons and also supplementing nerve growth factors in some 
cases. Transplantation of neural tissue and striatal grafts showed for the 
first time that MSNs could integrate and form circuitry in transgenic 
HD models [64]. NPCs engineered to overexpress GDNF protected 
neurons and promoted functional recovery in rodent models of HD 
[65]. In ALS that is currently considered incurable, the degradation 
of motor neurons that connect spinal cord to the muscles makes the 
life expectancy two to five years after diagnosis [66]. It has been shown 
that mouse embryonic stem cells can be differentiated into motor 
neurons and when transplanted into spinal cord of embryonic chick, 
motor neurons forms connections with skeletal muscles [61]. Thus in 
chick model replacement of dying motor neurons with healthy ones is 
a possibility but since body holds hundreds of different motor neurons, 
time will tell whether it will be practically feasible to convert stem cells 
into specific motor neuron and transplant to ALS patient in need [67].

There are many published studies on efforts made using approaches 
of stem cell therapy and pharmacology to treat neurodegenerative 
diseases (Figure 1). However, both approaches have met with 
several challenges in the past [68,69]. Although stem cell therapy 
has met with some significant success when utilized for treatment 
of neurodegenerative disease, as mentioned above there are several 

important considerations and risk factors associated with this approach. 
The limited number of donors, intrinsic properties of the cell type 
used, difficulties in controlling the differentiation potential of iPSCs, 
immunorejection in case of allogeneic transplantation and subsequent 
use of immunosuppressants, growth of tumor resulting from injection 
of mixed populations of differentiated and undifferentiated cells etc. 
are some of the complications posed by this approach and ultimately 
putting patients at risk [70]. Recently, zinc finger and X-linked 
transcription factor (ZFX) was shown to play role in maintaining self-
renewal and tumorigenic potential of glioma stem cells (GSCs) through 
upregulation of c-Myc expression. Thus, targeting ZFX could represent 
one of the promising strategies to overcome the risk of tumor formation 
posed by injecting mixed population of stem cells through inducing 
apoptosis or differentiation of brain tumor [71]. The pharmacological 
treatments on the other hand are mostly limited by the low permeability 
of compounds to cross the blood brain barrier (BBB) along with the 
side effects these compounds have shown in patients undergoing 
clinical trials [72]. 

Pharmacological Approach to Increase Stem Cell 
Number

Blood-brain barrier (BBB) which acquired selectivity during 
the course of evolution for the very purpose of protecting the brain 
against potentially harmful materials floating around in the blood 
supply actually makes pharmacological means of administering small 
molecular compounds to central nervous system more challenging 
[73,74]. Efforts are being made to increase the lipophilicity of these 
compounds to increase their chances of getting internalized in the brain. 
The use of nanotechnology to attach immunoglobulins, liposomes, and 
nanoparticles to these compounds for more efficient delivery across the 
blood-brain barrier has attracted many researchers in recent years [75]. 
Thus synthetic biology and precision nanomedicine aid in making drug 
delivery more effective which is one of the important criteria towards 
developing a safe and efficacious drug [76]. 

Small molecules have also been routinely used as a tool in stem cell 
research laboratories for different purposes including but not limited 
to maintenance of stem cells in undifferentiated state in culture to 
increase proliferative potential of pluripotent cells, reprogramming, 
differentiation, and manipulation of different signaling cascades within 
the cells [77]. They offer several advantages such as high permeability, 
being chemically defined, high purity and stability, more economic in 
comparison to peptides and growth factors, and flexibility of playing 
around with concentration to alter the effect [78]. Many such useful 
compounds affecting Wnt signaling pathway by inhibiting glycogen 
synthase kinase-3 (GSK3-beta) are known to promote the self-
renewal of embryonic stem cells [79]. Inhibitors of TGF-β family type 
I receptor-like kinase (ALK5) preventing Smad2 phosphorylation and 
TGF-β pathway can increase the self-renewal of induced pluripotent 
stem cells [80]. Similar to other stem cell types, the addition of small 
molecules to culture media can enhance neuronal proliferation 
and differentiation [81]. Some of the other commercially available 
compounds can selectively inhibit p38 mitogen-activated protein 
kinase (MAPK), which may be an intrinsic negative regulator of NSC 
proliferation during early brain development resulting in neural stem 
cell proliferation [82]. Additionally, 1-Oleoyl lysophosphatidic acid 
(LPA) sodium salt, an agonist of LPA receptors, inhibits human ESC-
derived NSC differentiation [83]. Some of the P2Y receptor agonists 
maintaining neural stem cells in undifferentiated; proliferating, self-
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renewing state can be utilized for treatment of neurodegenerative 
diseases [84]. The list of such molecules utilized for maintaining 
pluripotency in laboratory is increasing, thus holding a lot of promise 
for these to be used in treatment of human diseases. 

MS-818 as an Endogenous Stem Cell Proliferator
The currently available medications for neurodegenerative diseases 

only improve the symptoms and not treat the underlying disease. The 
fact that they show side effects in patients undergoing treatment calls 
for further refinement in the process of drug development. Different 
compounds including neurotransmission enhancers, anti-inflammation 
molecules, antioxidants, neurotropic factors, hormones have been 
utilized for developing promising therapies for neurodegenerative 
diseases [85]. Interestingly, different disease conditions, stressors, and 
the process of aging itself are known to negatively affect neurogenesis 
from endogenous NSCs highlighting the important roles played 
by endogenous factors [86]. So it is logical to target compounds 
resembling these factors for developing effective therapies. Several 
growth factors, peptides, and neurotransmitters including bFGF, TGF-
alpha, insulin-like growth factor-1, monoamine neurotransmitters, 
collagen peptides etc. have been shown to enhance neurogenesis [87-
91]. However, their use as a pharmacological compound has always 
been limited by the stability and their ability to cross the BBB. This 
makes a case for developing compounds that are highly permeable to 
the BBB, stable, safe, and efficacious. Several small molecules including 
purine analogs, AMPA receptor potentiators, neuroleptins, P7C3 class 
of neuroprotective compounds, and lithium etc. have been reported to 
enhance neurogenesis in different animal models [92-96].

We claimed in our patent (US 20110237574 A1), the application 
of MS-818’s (2-piperadino-6-methyl-5-oxo-5, 6-dihydro (7H) pyrrolo 
[2,3-d] pyrimidine maleate) ability to increase the stem cell number 
to be utilized for treatment of several human diseases. MS-818, a 
bicyclic pyrrolopyrimidine compound was originally synthesized in the 
late 1990’s by Awaya et al. [97] as an antimicrobial agent and later on 
shown to have neurotropic effects upon cultured human and mouse 
neuroblastoma cells, and upon nerve growth factor (NGF)-induced 
PC12 cell differentiation. Although initially thought to regulate neurite 
outgrowth, MS-818, since then has been shown to perform many 
important neural and non-neural functions in different animal models. 

In our hands, MS-818 showed 7-fold increase in NSC population 
in the aged rats, which is much higher when compared with other 
aforementioned compounds [98]. To investigate the effect of MS-818 
on proliferation of endogenous stem cells, MS-818 (3 mg/kg/day) was 
injected for 5 consecutive days into 27-month old rats, whereas control 
animals received the same amount of saline. Bromodeoxyuridine (BrdU) 
(100 mg/kg/day) was then injected for 3 days. The brains were removed 
after 24 hours of the last injection and fixed for immunohistochemical 
detection of the proliferating cells through BrdU staining. The number 
of BrdU positive cells increased more than seven folds in the cerebral 
cortices of MS-818-treated animals compared to controls, indicating an 
increased neural stem cell population in the brain. In the area of the 
subventricular zone, a significant increase not only in the proliferation 
but also in the migration of stem cells was found.

MS-818 plays a role in reduction of infarct size and amelioration 
of sensorimotor dysfunction as indicated by the results of forelimb and 
hindlimb placing tests following permanent focal cerebral ischemia in 
rats, thus making this small molecular compound a candidate for the 
treatment of focal cerebral ischemia [99]. It has been shown to enhance 
functional recovery of damaged sciatic nerves resulting from crush 

injury by promoting axonal sprouting through indirect activation of 
Schwann cells and possibly by activation of local production of nerve 
growth factors (NGFs) [100]. It promotes axonal survival by inhibiting 
cell death in a dose dependent manner and enhances the neurotrophic 
actions of bFGF through stimulation of signaling cascades that may 
increase MAPK levels within neurons [101]. MS-818 activates Schwann 
cells, which migrated from proximal stump inducing axonal elongation 
in vivo [102].

Shimoda et al. [103] demonstrated dose-dependent suppression of 
UVB-induced increase in tumor necrosis factor alpha (TNF-alpha) that 
is one of the cytokines inducing apoptosis by MS-818. MS-818 protects 
epidermal cells from UVB-induced damage and also suppresses 
melanogenesis in B16 melanoma cells through downregulation 
of tyrosinase expression mediated by microphthalmia-associated 
transcription factor (MITF) and extracellular signal-regulated kinase 
(ERK) making it a strong contender for protective and whitening 
agent towards applications in cosmetics [103]. It has been shown to 
possess neurotrophic activity and to enhance basic fibroblast growth 
factor (bFGF)-induced angiogenesis in vivo [104]. MS-818 affects 
endothelial cells directly and induces migration of tubes and their 
formation by endothelial cells in vitro [105]. MS-818 also mobilizes 
endothelial progenitor cells from the bone marrow and potentiates 
their differentiation to endothelial cells. Thus, MS-818 promotes 
both angiogenesis and vasculogenesis [105]. Sugiyama et al. [106] 
explored MS-818’s effect on muscle regeneration and showed that 
the proliferation and differentiation of activated satellite cells and the 
fusion of myotubes to form immature myofibers were accelerated upon 
treatment with this compound [106]. MS-818 administered at a dose of 
5 mg/kg intraperitoneally for 14 consecutive days promotes the fracture 
healing process in rat fracture model through enhancement of the effect 
of bFGF on endochondral ossification [107]. Its effect on in vivo gastric 
mucosal repair using a wound repair model with primary cultured 
gastric epithelial cells from rabbit was demonstrated by Watanabe et 
al. [108] MS-818 when administered alone had no effect but enhanced 
EGF-induced acceleration of gastric epithelial cell proliferation and 
migration at a dose of 10-100 μM [108]. 

We demonstrated in our patent (US 20110237574 A1) MS-818’s 
role in increasing corneal and retinal stem cell number. Ophthalmic 
formulations when applied upon removal of lachrymal gland resulted 
in increased stem cell population in cornea in rat model. When 10 
μg as one time injection of MS-818 was injected directly into the 
vitreous cavity of rat followed by BrDU administration, a dramatic 
increase in the number of BrdU-positive cells was seen in the retinal 
ciliary marginal zone after three days. Thus, MS-818 might find 
application in treatment of eye diseases, which affects millions in US 
and cost a fortune. The formulations we used for exploring MS-818’s 
role in endogenous stem cell proliferation in eye were found to be 
slightly acidic. We are currently investigating whether increasing the 
pH of formulation to physiological range by changing the salt would 
improve its permeability across BBB, eventually resulting in higher 
stem cell proliferation potential. Different biochemical and biophysical 
assays will be used to screen these formulations for their permeability, 
solubility, and stability over time. The exact mechanism of action is not 
yet known for MS-818; however, there are some reports on it acting 
through MAPK [105]. Table 1 summarizes its functions, model systems 
used, and possible mechanisms of action. The quick biological response 
shown by MS-818, and its IC50 being in nanomolar range possibly 
suggests some other mechanism of action. It could possibly be working 
through purinergic receptors, which play roles in proliferation and 
migration of neural stem cells, vascular reactivity, cytokine release, and 
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apoptosis etc. It is also possible that MS-818 works through cytokine 
receptors, or through altering the gene expression.

Not only MS-818 but also any molecule that acts through any of 
the above mentioned mechanisms to proliferate the endogenous stem 
cell population could be a good candidate for a generalized stem cell 
proliferator to be utilized for treatment of neurodegenerative diseases. 
The studies performed in our laboratory show that MS-818 is highly 
permeable to the BBB and nontoxic even at very high dose. Our long-
term goal is to develop oral pills of MS-818 as a stem cell proliferator. 
However, towards that goal its stability in highly acidic environment 
and adsorption in stomach have to be nailed down first.

Conclusions
The absence of effective treatment for neurodegenerative diseases 

put enormous monetary and emotional burden on the nation. A lot of 
progress has been made in the last few decades utilizing stem cell therapy 
and pharmacology towards that goal. Although these endeavors have 
been successful in improving the symptoms of these diseases; designing 
an effective stem cell therapy or medication specifically tailored for each 
patient taking in consideration his age, hereditary, stage of illness, and 
other complications will certainly keep scientists and physicians busy 
for quite some time. As the patients suffering from neurodegenerative 
diseases have not much time left after their diagnosis, finding the right 
cure for them would certainly require collaboration among people from 
different walks of life e.g. scientists, physicians, clinicians, medicinal 
chemists, pharmacologists etc. As a means to increase stem cell number, 
treatment with MS-818 would serve as a powerful tool of regenerative 
medicine. Increasing endogenous stem cell population through drug 
treatment can become the future treatment of choice. As different 
disease conditions affect the differentiation pattern of newly formed 
stem cells, this demands for a more in-depth monitoring of how the 
patient’s brain environment is affecting their neurogenesis. 
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sciatic nerves

Crush-injured sciatic nerves of rats
Through indirect activation of Schwann cells and 
possible activation of local NGF

[100]

Promotion of fracture healing process Rat fracture model
Through enhancement of the effect of bFGF on 
endochondral ossification

[107]

Acceleration of early muscle regeneration and 
enhancement of muscle recovery after surgical 
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