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Introduction
When designing studies to assess occupational exposures, 

the decision-making process includes not only the choice of an 
appropriate measurement method, but also the determination of an 
efficient number of participants and an efficient number of repeated 
measurements for each participant. Several authors using ANOVA to 
examine performance sampling strategies in assessment of work-related 
physical loads [1-4] have argued that statistical power and precision 
can be improved if the sample size of inputs with greater variability is 
increased. For instance, if the between-subject variance is higher than 
the within-subject variance, these authors suggest that the power and 
precision will be improved by increasing the number of subjects instead 
of the number of recordings per subject. The optimal input demand in 
each sampling stage should, however, be determined not only on the 
basis of the random error in that stage but also taking into account the 
corresponding cost. Although usable methodologies for optimizing the 
cost and error of sampling strategies have been available in the sampling 
statistics literature for some decades [5,6], there is no empirical study 
on optimization of strategies used to assess work-related physical loads 
[7]. Moreover, there are important sources of random error that are not 
taken into consideration in the assessment strategies usually applied 
in these studies. Exposure assessment studies usually only consider 
between-subject and within-subject uncertainties, but between-
investigator and within-investigator uncertainties are also important, 
particularly when subjective assessment techniques are used. The latter 
two sources of error have not previously been considered in optimizing 
assessment strategies though the effects of the investigator’s (observer’s) 
education and experience on the precision of exposure mean estimates 
have been discussed [8-10]. However, a study by Rezagholi et al. [11] 
showed that the work intensity of a design (i.e. the numbers of observers 
and repeated assessments) strictly influenced not only the precision 
of the mean estimate but also the cost efficiency of that design. Input 
demands in all the important stages should therefore be optimized 
according to their cost-efficiency; that is, on the basis of their effects 
on the cost and precision of the assessment strategy. Observer-based 
sources of variable costs and errors should also be included in the cost-
efficiency analysis, particularly when no direct technical measurement 
methods are employed. If these sources are excluded, the design that is 
identified as optimal may in fact not be the true optimal strategy.

A cost-efficient assessment strategy either maximizes the precision 
of the mean exposure estimate subject to a certain cost (predetermined 
budget), or minimizes the total cost of achieving a required precision. 
Only a few studies have aimed at optimizing resource allocation between 
different stages of exposure assessment, and none of them focused 
on physical loads [12-15]. There is also a theoretical optimization 
study hypothesizing a non-linear model for estimating the total cost 
of a three-stage sampling, while omitting observer-based sources of 
variable costs and errors in the supposed cost and statistical models 
[16]. The cost-efficiency studies, however, suffer from ambiguity or 
linearity in cost-output relationship, incompleteness in optimization 
procedure and economic analysis, and confusion and/or simplicity 
in the estimation and analysis of input costs [7]. No study derived 
a cost function showing the minimized cost as a function of all cost 
components and the output (i.e. the statistical efficiency in terms of 
precision or statistical power), despite the fact that the cost function 
is the basis for economic evaluation of a production technology [17]. 
Further, none of these studies made economic interpretations based 
on comparative static analysis of the derived functions (i.e. comparison 
analysis of different economic outcomes before and after a change in 
some underlying exogenous parameters as costs). The purpose of the 
present study was to provide cost-efficient strategies for observational 
assessments of work-related postural loads, by optimizing resource 
allocation between important stages of the posture assessment. In 
addition, as a necessary tool for economic analysis, salient econometric 
measures were estimated on the basis of the statistical cost and demand 
functions derived in this study. The optimization problem was resolved 
by using the models and principles developed in sampling methodology 

Abstract
Studies aimed at optimizing resource allocation between different sampling stages are characterized by both 

simplicity and incompleteness in optimization and economic analysis. The aim of this study was therefore to 
completely resolve the allocation problem for a four-stage strategy devoted to observational assessment of work-
related postural loads with the precision of the mean estimate considered as ‘output’. The derived demand functions 
for inputs to the four stages were used to derive functions for the minimized cost and the maximized precision of 
the assessment strategy. The application of the theoretical results to a working posture assessment study led to 
increased cost efficiency of the assessment strategy investigated in the study. Under the additional constraint that 
the optimal values must be integers, optimization of this strategy would result in either a 12% reduction in cost or a 
7% increase in precision.  

Oc
cu

pa
t io

na
l M

edicine & Health Affairs

ISSN: 2329-6879



Citation: Rezagholi M (2014) Deriving Cost-Efficient Strategies for Observational Assessments of Postural Loads. Occup Med Health Aff 2: 174. 
doi:10.4172/2329-6879.1000174

Page 2 of 7

Volume 2 • Issue 4 • 1000174
Occup Med Health Aff
ISSN:2329-6879 OMHA, an open access journal

as the inverse of the standard error of the mean estimate. The two 
problems in optimal resource allocation are to minimize the total 
cost of achieving a desired level of precision (the precision-required 
problem), and to maximize the precision of the group mean estimate 
for a limited cost (the budget-constrained problem). Both problems are 
solved by determining the optimal values of inputs , ,s o rn n n , and an
. The precision-required cost minimization problem and the budget-
constrained precision maximization problem were defined as: 

1) Min s s o o r s r a s o r ac n c n c n n c n n n n⋅ + ⋅ + ⋅ + ⋅ subject to
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subject to 0
s s o o r s r a s o r ac n c n c n n c n n n n B⋅ + ⋅ + ⋅ + ⋅ ≤ ; both 

with respect to the inputs , ,s o rn n n , and an ; 0P and 0B denote the 
predetermined precision and budget, respectively. All constant 
parameters such as costs and random errors were assumed to be positive, 
and all input demands were included as strictly positive integers. 

The Lagrange multiplier method was used to resolve the constrained 
optimization problems.

Productive efficiency, technical efficiency, cost elasticity of output, 
and returns to scale as four important aspects of economic performance 
[21-24] are developed for the assessment strategy:

The productive efficiency, PE, was measured as the minimized cost 
of the optimal strategy divided by the cost of the current strategy as 
follows:

Minimum costPE
Current cost

=                      (3)

The cost saved through elimination of productive inefficiency was 
then obtained as 1 PE− .  

The technical efficiency, TE, of the current non-optimal assessment 
strategy was measured as the precision yielded by this strategy divided 
by the precision maximized by the optimal strategy:

Current precision TE
Maximum precision 

=                                      (4)

The gain in precision through the elimination of technical 
inefficiency was then obtained as 1-TE.

The cost elasticity of precision, c
PE , defined as the percentage 

change in the minimized cost per unit percentage change in the level 
of precision, was obtained by differentiating the derived cost function 
with respect to precision in logarithms as follows:

ln
ln

c
P

CE
P

∂
=
∂

                    (5)

c
PE  

gives information about economies of scale, referring to the 
cost advantages that a researcher obtains due to expansion, while its 
inverse gives information about the returns to scale associated with the 
exposure assessment study.  

Based on the derived demand functions for the four inputs, the 
decision-maker will be able to predict the number of percentage points 
by which the optimal demands should change as a result of a one percent 
change in corresponding costs. This econometric concept is called the 
own-price elasticity of demands, p

DE , [24] and is measured as follows:
ln
ln

p D
D

QE
p

∂
=

∂
,                 (6)

where 
DQ is the quantity of demand. The own-price elasticity of 

demand shows the sensitivity of the quantity demanded of an input to 
the changes in its cost. For 1 0p

DE− < < , the demands are inelastic (not 

[5,18] and production economics [19,20]. An algorithm was also 
developed to address the problem of possible deviation from the optimal 
solution when the optimal values must be adjusted to integers, an issue 
which has not previously been addressed in the relevant literature. The 
ambition was to supply theoretical and methodological frameworks for 
optimally determining inputs to stages of exposure assessments under 
different conditions.

Methodology
Two known optimization approaches were formulated for providing 

cost-efficient strategies devoted to observational assessment of working 
postures. The optimal input demand functions for each stage of posture 
assessment were then derived, interpreted, and statically analysed. 
The functions of minimized cost and maximized precision were also 
derived. The two optimization approaches were then put into practice 
using empirical data and information from a study by Rezagholi et al. 
[11]. 

Assessment strategy 

The assessment strategy chosen for optimization was a four-stage 
design consisting of a two-stage observation work design and a two-
stage data collection procedure; this is the same structure of assessment 
strategies used in the study from which the empirical data were drawn 
[11]. The two-stage observation work design referred to the number 
of observers and the number of repeated assessments per observer; 
and the two-stage data collection procedure consisted of the number 
of subjects and the number of recordings per subject over time. The 
four input demands to be optimized were thus the numbers of subjects 
( sn ), observers ( on ), exposure recordings per subject ( rn ), and 
repeated assessments per observer ( an ). Accordingly, four sources of 
random error, which were assumed to be constant in this study, were 
considered: between-subject ( 2ˆbsσ ), between-observer ( ˆbo ), within-
subject ( 2ˆwsσ ), and within-observer ( 2ˆwoσ ). The total cost of the four-
stage strategy was made up of the costs of recruiting subjects, recruiting 
observers, making the recordings, and performing the assessments. 
The average unit costs in each stage of posture assessment, denoted as

, ,s o rc c c , and ac , respectively, were assumed to be constant during 
the optimization analysis. 

Technical method    

In optimizing the assessment strategy, the technical methods 
used for exposure assessments (and thus their effects on sources of 
cost and error) were considered in principle to be predetermined and 
constant. A certain video-based observational approach was chosen in 
combination with the four-stage assessment strategy.    

Optimization approaches   

Two interchangeable objective and constraint functions were used 
in optimizing the four-stage assessment strategy: one for the total cost, 
C, and one for the expected precision of the mean exposure estimate, 

ˆ( )P µ ; both are based on the functions that used by Rezagholi et al. [11] 
for estimating the variable costs and errors:

s s o o r s r a s o r aC c n c n c n n c n n n n= ⋅ + ⋅ + ⋅ + ⋅                                   (1)
1

2 2 2 2 2ˆ ˆ ˆ ˆˆ( ) bs bo ws wo

s o s r s o r a

P
n n n n n n n n
σ σ σ σµ

−
 

= + + + 
 

 ,               (2)

where s sc n⋅ , o oc n⋅ , ⋅r s rc n n , and a s o r ac n n n n⋅  are the total costs 
of recruiting subjects, recruiting observers, making the recordings, 
and performing the assessments, respectively, and ˆ( )P µ  is defined 
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sensitive to changes in cost), while for 1p
DE−∞ < < − , the demands are 

elastic (sensitive to changes in cost).     

Theoretical Results 
Maximizing precision subject to a budget constraint gives the same 

condition that was necessary for minimizing the cost of achieving a 
required precision. According to economic principles, the conditions 
for realizing an optimal choice hold where the ratio of marginal 
products (marginal product of an input is the change in output resulting 
from an additional unit of the input) of two inputs is equal to their 
corresponding cost ratio; that is, where =i i

j j

MP c
MP c

. Based on the function 

(2), this condition is derived as follows:
2 2

2 2
i j i

j i j

x c
x c

σ
σ

⋅
=

⋅
,                      (7)

where i and j refer to inputs and x stands for the total numbers of 
subjects, observers, recordings, and assessments.

Demand functions

Cost-minimized demand functions for the four inputs are 
derived by using the first-order conditions for the solution of the cost 
minimization problem:  
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where 1 1 1 1    2 2 2 2ˆ ˆ ˆ ˆbs s ws r bo o wo ak c c c cσ σ σ σ= ⋅ + ⋅ + ⋅ + ⋅ .

The precision-maximized demand functions for the four inputs are 
also derived by using the first-order conditions for the solution of the 
precision maximization problem:
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In both optimization approaches, the same demand function for 
the number of recordings per subject is derived. The optimal number 
of recordings per subject is independent of any requirement in the 
precision of the mean estimate or constraint in research budget; it is a 
function solely of within-subject to between-subject variance ratio and 
subject-to-recording cost ratio. However, the optimal demands of the 
independent variables (the numbers of subjects and observers) exhibit 
a function of constraints in the optimization problems in addition to all 
cost and variance components. For a higher precision requirement in 
the cost-minimization approach and a greater budget in the precision-
maximization approach, the demand for subjects and observers would 
increase. However, the demand function for the number of assessments 
per observer in each approach is negatively related to the constraint 
(desired level of precision or fixed budget).

Cost function

The cost-minimized optimal values of inputs are substituted into 
the objective function (1) in order to derive the following statistical cost 
function: 

( )21 1 1 1    min 2 2 2 2 2ˆ ˆ ˆ ˆbs s bo o ws r wo aC P c c c cσ σ σ σ= ⋅ ⋅ + ⋅ + ⋅ + ⋅ ,       (10)

which can be rewritten more simply as min 2 2C k P= ⋅ . The average 
cost (AC) and marginal cost (MC) of improving the precision by one 
unit are obtained as follows: 

2CAC P k
P

= = ⋅                 (11)

2( , , ) 2C c PMC P k
P
σ∂

= = ⋅
∂

                                (12)

The derived cost function (10) shows the minimum amount of cost 
necessary to achieve a desired level of precision, and has the following 
properties: 

Shephard’s lemma [22] holds: ( )2 *, , i iC c P c xσ∂ ∂ = , where *
ix denotes 

the optimal values of sn , on , s rn n , and s o r an n n n .

The optimal value of the Lagrange multiplier, *λ , is equal to the 
rate at which the cost increases as the required precision is increased; 
that is, the marginal cost: * C MC

P
λ ∂

= =
∂

.  

The cost function is increasing in P; that is, an increase in the required 
precision would lead to an increase in the total (minimized) cost: 

( )2, , 0C c P Pσ∂ ∂ > . It is also non-decreasing in c: ( )2, , 0σ∂ ∂ ≥iC c P c . 

The cost function is linear homogeneous in c: 
( ) ( )2 2, , , ,C ac P a C c Pσ σ= ⋅ .

The cost function is continuous and concave in c: ( )2 2 2, , 0iC c P cσ∂ ∂ ≤ .

Proof that the above properties hold is given in the Appendix. 

The logarithmic form of the cost function is:

( )1 1 1 1    2 2 2 2ˆ ˆ ˆ ˆln 2ln 2 ln bs s bo o ws r wo aC P c c c cσ σ σ σ= + ⋅ ⋅ + ⋅ + ⋅ + ⋅               (13)

The cost elasticity of precision, 2c
PE = , reveals that the marginal 

cost of improving precision by one unit is twice the average cost of 
producing it. It is worth noting that this result is due to the decreasing 
returns to scale that characterize the statistical model structure, since 
1/ 1/ 2 1c

PE = < .    

Substituting the precision-maximized demand functions for inputs 
into the precision formula (2), or simply using the duality property 
of optimality and solving the cost function (10) for P, the maximized 
precision of the mean estimate as a function of the research budget 
would be:

1 2
max

1 1 1 1    2 2 2 2ˆ ˆ ˆ ˆbs s bo o ws r wo a

BP
c c c cσ σ σ σ

=
⋅ + ⋅ + ⋅ + ⋅

 ,            (14)

which can be rewritten more simply as 
1 max 1 2P k B−= ⋅ . The value 

function shows the highest precision in exposure assessment that could 
be achieved at a given research budget.

The own-price elasticities of the (cost-minimized) demands are:
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and the own-price elasticities of the (precision-maximized) 
demands are: 
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Application
An empirical example   

The data for the empirical example are drawn from a study by 
Rezagholi et al. [11], in which a non-optimized but relatively cost-
efficient assessment strategy, specified as 4sn = , 4on = , 1rn = , and 

2an =  (“many assessments few samples”, or MAFS) was used to assess 
upper arm postures of hairdressers in Umeå, Sweden. The calculations 
below describe the process of optimizing MAFS when used for assessing 
the mean angle at which the hairdressers held their upper arms while 
working.   
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The estimated average costs based on data and information from 
the study and also the variance components given by the study are 
presented in Table 1.

Using the cost-saving observational technique called WS120 in the 
above mentioned study, the current non-optimal assessment strategy 
would yield a precision of around 0.241 and require a total cost of 
4392 SEK. These values are considered the ‘required precision’ and the 
‘predetermined budget’ for exposure assessment when optimizing the 
current strategy.

Precision-requiring cost minimization

To provide a cost-minimized assessment strategy while ensuring 
that the precision of the mean estimate does not drop below the 
current precision (i.e. ( )ˆ 0.241P µ ≥ ), according to equation set (8) the 
optimal demands for inputs would be * 6.25sn = , * 1.46on = , * 0.71rn = , 
and * 4.39an = . Because non-integer values cannot be used in practice, 
they should be rounded to the nearest integers, giving * 6.25=sn , * 1on =
, * 1=rn , and * 4an = . However, these adjustments produce a drop in 
precision which, though negligible, takes the precision below the 
required level. Although the adjusted strategy is more cost-saving than 
the one currently used, it is not yet optimal due to the deviation from 
the required precision. To avoid any deviation from the requirement, 
while minimizing cost, an appropriate algorithm should be used. That 
is, all possible strategies that yield a precision not absolutely less than 
0.241 should first be found based on the derived strategy; and then 
the cheapest, which will be closer to the minimized cost obtained by 
(10), should be selected. In this context, the alternative strategies can be 
generated by separately increasing each of the four inputs by one unit in 
order to eliminate the deviation caused by the adjustments. As shown in 
Table 2, the precision-constrained cost-minimized assessment strategy 
among four possible alternatives is given by the set of * 6sn = , * 1on = , 

* 1rn = , and * 5an = . The practically usable cost-minimized strategy costs 
3867 SEK with a precision (= 0.245) exceeding 0.241.

The precision provided by the cost-minimized assessment strategy 
is estimated at 0.245, which exceeds the desired level of precision. 
According to equation (3), the productive efficiency of the current 
strategy (MAFS) is 0.88, and so the cost saving made possible by using 
the cost-minimized strategy (i.e. through elimination of the productive 
inefficiency of MAFS) is thus 0.12. Researchers in the study by Rezagholi 

et al. [11] could thus save 12% of the resources (525 SEK) by using the 
cost-minimized assessment strategy, while the precision of the mean 
posture assessment would also be slightly increased.

The own-price elasticities of the cost-minimized demands are 
presented in Table 3.

All the values in the table above are between zero and minus one, 
meaning that the optimized demand functions are not sensitive to 
changes in costs. If, for instance, the average unit cost of recruiting a 
subject increases by 10%, the demand for subjects should be decreased 
by 4.1%. However, after adjustment to the nearest integer, the new 
number of subjects (5.75) does not affect the optimized demand ( 6= ).

Budget-limited precision maximization

To maximize the precision of the mean estimate under the 
condition that the total cost does not exceed the current cost (4392 
SEK), equation set (9) gives the optimal values as * 7.85sn = , * 1.84on =
, * 0.71rn = , and * 3.49an = . After adjustment, the precision-maximized 
assessment strategy is thus * 8sn = , * 2on = , * 1rn = , and * 3an = . However, 
these adjustments are not affordable because the cost of providing 
the adjusted strategy (=5642 SEK) would dramatically exceed the 
predetermined budget. To prevent the cost from exceeding its 
constraint, the closed alternative strategies that absolutely would not 
cost over 4392 SEK should be found, and then the most precise of them 
should be selected. To reduce the total variable cost of strategy by at 
least 1250 SEK, the numbers of subjects, observers, and assessments per 
observer should be gradually reduced until the suggested cost decreases 
below the predetermined budget. According to the algorithm, there are 
five alternatives for compensating the excess cost. The optimal strategy 
is found when the adjusted numbers of subjects and assessments per 
observer are reduced to 6 and 2, respectively. Thus, as shown in Table 
4, the budget-constrained precision-maximized assessment strategy is 
specified as * 6sn = , * 2on = , * 1rn = , and * 2an = .

The derived strategy will cost 4200 SEK, which is less than the 
predetermined research budget, while the precision is significantly 
increased. Equation (4) gives the technical efficiency of the non-optimal 
strategy (MAFS) as 0.93; the gain in precision through elimination of 
the strategy’s technical inefficiency is thus 0.07. Use of the precision-

2ˆbsσ 2ˆboσ 2ˆwsσ 2ˆwoσ sc oc rc ac ˆ( )Var µ ( )ˆP µ TC

18.7 4.9 34.6 86.9 97 465 360 22 17.22 0.241 4392

Table 1: Variance and cost components, current precision of group mean estimate, 
and total cost (TC) in SEK associated with MAFS.  

Assessment strategy ( )ˆP µ TC

7sn =
; 

1on =
; 

1rn =
; 

4an = 0.253 4280

6sn =
; 

2on =
; 

1=rn
; 

4an = 0.276 4728

6sn =
; 

1=on
; 

2rn =
; 

4an = 0.280 6423

6sn =
; 

1=on
; 

1rn =
; 

5an = 0.245 3867

Table 2: Possible choices for precision-constrained cost-minimized assessment 
strategies.

s

s

P
DE o

o

P
DE r

r

P
DE a

a

P
DE

-0.41 -0.40 -0.50 -0.59

Table 3: Own-price elasticities of the cost-minimized input demands.

Assessment strategy ( )ˆP µ TC

5sn = ; 2=on ; 1rn = ; 3=an 0.250 3875

7sn = ; 1on = ; 1rn = ; 3an = 0.245 4126

6sn = ; 2on = ; 1rn = ; 2an = 0.259 4200

7sn = ; 1on = ; 1rn = ; 2an = 0.231 3972

8=sn ; 1on = ; 1=rn ; 1=an 0.211 4297

Table 4: Possible choices for budget-constrained precision-maximized assessment 
strategies.
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maximized strategy in the study by Rezagholi et al. [11] would lead to a 
7% improvement in the technical efficiency of the assessment strategy, 
while the total variable cost would be reduced by 192 SEK.

The own-price elasticities of the precision-maximized demands are 
presented in Table 5.

Again, in this approach the optimized demand functions are not 
sensitive to changes in costs. If, for instance, the cost of recruiting 
observers increases by 10%, the demand for observers should be 
decreased by 6%. However, the new number of observers (1.88) does 
not change the optimized demand.

Discussion 
Two approaches were used in this paper in order to completely 

optimize the four-stage strategy applied by Rezagholi et al. [11] for 
assessing upper arm postures, and the cost, variance, and demand 
functions of the strategy were derived on the basis of the cost and 
variance equations used in the study. The derived functions were also 
put into practice using data from the aforementioned study.

As expected, the demand for each input had a positive relation 
with its uncertainty but a negative relation with its cost. However, the 
associations did not hold cross-wise: an increase in the cost of each 
input would principally decrease its demand, but at the same time, could 
increase the demand for another input due to the substitution effects 
in the posture assessment study. The fact that the demand functions 
for repeated assessments per observer were decreasing in P and B was 
unexpected, but can be explained as follows. An increase in the research 
budget when maximizing the precision of the mean estimate would 
decrease the demand for the input, because the increased budget would 
optimally result in allocating more resources to the inputs with higher 
productivity (ability to improve precision). However, according to (2), 
the number of assessments per observer was the least productive input. 
Similarly, an increase in the required precision when minimizing cost 
would decrease the demand for this input because the higher required 
precision would be achieved by using more of the cost-saving inputs, 
and this input was the least cost-saving input according to the isocost 
line equation (1).

In both optimization approaches, the own-price elasticity of 
demand for each input was inelastic (between 0 and -1), meaning that 
a major change in cost would be required to adjust the corresponding 
optimal demand.          

The non-linear input-precision relationship indicated by the 
precision formula (2) also leads to a non-linear cost-precision 
relationship, verified by the cost function (10). The character of the 
statistical model structure (decreasing returns to scale, DRS) means 
that the marginal cost of precision exceeds its average cost. A rational 
decision-maker would not improve precision in this case. However, 
since the marginal cost cannot be compared with the marginal benefit 
of precision, care must be taken to verify any diseconomies of scale 
associated with the statistical production (i.e. the posture assessment 
study).

In the numerical example, the decision-maker could choose to 

implement either the cost-minimized strategy to save 12% of the cost, or 
the precision-maximized strategy to improve the precision by 7%. It is 
worth noting that the size of the cost savings and precision improvement 
offered by the optimizations are only related to the posture assessment 
study, and could be more substantial if the currently-used strategy 
had higher productive and technical inefficiencies. The inefficiencies 
associated with the four-stage strategy applied by Rezagholi et al. [11], 
however, were low (i.e. the strategy was yet relatively cost-efficient). 

Output specifications and ‘simplicity’ 

The optimized solutions were derived by applying the traditional 
model structure of sampling cost and variance developed in sampling 
methodology, as described by equations (1) and (2). There are two 
main reasons to employ this model in optimizing the strategy devoted 
to posture assessments. Firstly, there is a practical need for closed 
solutions to optimize the initially employed assessment strategy, and 
thus to explore the possibility of increasing its cost-efficiency. Secondly, 
as the precision of posture assessments evaluated by an additive random 
effects model was considered as the output in the study by Rezagholi et 
al. [11], it should also be considered as the output of posture assessment 
study in the present study, and the cost model should be constructed 
accordingly. 

In the sampling optimization studies, the precision of the mean 
estimate is defined as the inverse of its variance [13,15,16]. As the 
variance is estimated with an additive random effects model, the 
precision is linear homogeneous in the inputs; that is, the exposure 
assessment study is subject to constant returns to scale. This property 
also means that the cost is linear homogeneous in precision, when the 
marginal cost is always equal to the average cost. The simplicity cannot 
be remedied by hypothesizing non-linear isocost lines. Allowing the 
costs to vary non-linearly with the sampling units at each stage, as 
Mathiassen and Bolin [16] allowed in their model, was not relevant 
in the long-run optimization problems. Usually, sampling strategies 
are optimized for an exposure assessment study over a longer period; 
and the labour productivity and learning curves at each stage of the 
exposure assessment are sharply increasing in initial attempts, but even 
out gradually over time. Thus, the labour cost curves, which are sharply 
decreasing at the beginning of the assessment study, will also smooth 
out over time. However, by defining the precision of the mean estimate 
as the inverse of the standard error in the present paper, the linearity in 
the input-precision and thus the cost-precision relationship vanished 
according to equations (2), (10), and (13).     

Inputs to the posture assessment could be optimized using structures 
adapted from the complex cost functions which have been developed in 
production economics [19]. However, the estimation of advanced cost 
functions would have required time series, cross-sectional data, or a 
pooled empirical dataset, none of which were available. Furthermore, 
in order to apply standard cost functions, the usefulness and the 
quality of information produced on the working posture would have 
to be valued in monetary terms [23] as is usual for the benefits in cost-
benefit analysis, even in health economics [25]. By using standard 
cost functions, economic decisions regarding the size of the exposure 
assessment study might be made on the basis of information about the 
marginal and average costs of producing information on the exposure.    

Deviations from constraints 

The adjusted optimal values of the inputs, regardless of the objective 

s

s

P
DE o

o

P
DE r

r

P
DE a

a

P
DE

-0.59 -0.60 -0.50 -0.41

Table 5: Own-price elasticities of the precision-maximized input demands.
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of optimization, deviated from the constraints (required precision and 
predetermined research budget, respectively). The optimal assessment 
strategy could not employ, for instance, 0.71 recordings per subject; 
and so the derived values had to be adjusted to strictly positive integer 
values. However, these adjustments caused the precision and the 
cost to deviate from the required precision and the predetermined 
budget, respectively. The practical solution to this problem was to first 
increase/decrease the inputs to the point where the deviations from 
the unadjusted constraints were acceptable, and then to identify the 
optimal assessment strategy among all possible alternatives (cf. Tables 
2 and 4).                    

Regardless of the complexity of the models, the problem of 
deviations from constraints should always be taken into consideration 
in future studies as long as the inputs to the exposure assessment cannot 
be continuous; and the Lagrangian function containing the discrete 
variables will be differentiated in any case during the optimization 
procedure.

Measurement bias and optimization approach

The four-stage strategy used to assess the upper arm postures was 
optimized in two approaches. However, for these budget-constrained 
and precision-constrained optimizations, the posture assessment study 
should not be subject to any significant systematic error that varies 
depending on the inputs. Otherwise, optimizing the input demands 
at each stage could also lead to an increase in some systematic error 
associated with the posture assessment study [26]. Thus, when there 
is a significant source of bias associated with a given input, its effect 
on the statistical efficiency of exposure mean assessments should be 
considered in the error equation.

Econometric issues 

The own-price elasticity of demand and the cost elasticity of 
precision are not the only econometric measures that could be used as 
tools for decision-making on input demands. For example, the demand 
for an input may change as a result of a change in the price of another 
input. This occurrence is called cross-price elasticity of demand, j

i

P
DE , 

which measures the percentage change in demand for an input as the 
price of another input changes by one percent [24]: 

ln
ln

∂ ∂
= = ⋅
∂ ∂

j i i

i

i

P D D j
D

j j D

Q Q P
E

P P Q
                   (17)

The sign of j

i

P
DE  depends on substitution/complementation between 

the two inputs in the exposure assessment study. If the two inputs are 
complements in the study, the sign is negative; if they are substitutes, 
the sign is positive. 

Elasticity of substitution between any two inputs, ijσ , measures the 
percentage change in the ratio of inputs resulting from a one percent 
change in the corresponding price ratio [Ibid]. It is usually introduced as 
a measure of the relationship between the technical rate of substitution 
and the input ratio as follows:

ln

ln

i

j
ij

j

i

n
n

c
c

σ

 ∂  
 =
 ∂  
 

                 (18)

The greater the elasticity of substitution, the greater will be the 
input substitution effects of changes in input prices.

Finally, the elasticity of cost with respect to one input cost, 
i

C
cE , is 

used to predict the minimized total cost following partial change in an 
input price. The measure is equal to the cost share of that input using 
Shephard’s lemma [22]:

i

C i i i
c

i

c n cCE
c C C

⋅∂
= ⋅ =
∂

               (19)

Conclusion
Strategies devoted to assessing occupational exposures should be 

optimized in either their technical or productive efficiency as soon 
as data on average costs and variance components are available; the 
relatively cost-efficient strategies can be improved by optimization. The 
optimized assessment strategies can be applied over the long term, since 
the optimized demand functions for inputs are not sensitive to changes 
in costs. For additional improvement of precision, the marginal benefit 
of precision should also be assessed in order to allow an economic 
evaluation of the exposure assessment study.     
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