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Abstract
The aim of this paper is to model SARS-CoV-2 based on Markov chains. First, we introduce basic concepts of Markov chains with 

examples from different disciplines. Second, we use different types of Markov chains to model SARS-CoV-2, including confirmed cases, 
death and recovered cases and forecasting future confirmed cases. Third, we give conclusions based on these models and ideas for 
future work. Markov chains were found to be convenient and userful for simulation of the SARS-CoV-2 transmission dynamics while 
enabling detailed exploration under assumption of conditional independence. Nevertheless, there are also possibilities for extension of 
discrete time model to continuous time and consideration of spatial distribution of SARS-CoV-2. 
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Introduction
SARS-CoV-2 has been a big threat in the U.S. since March, 2020 

[1,2]. Many people including us are affected by this unexpected disease. 
SARS-CoV-2 test can result in false test results and in accuracies that 
lead in bias [3]. As statisticians, we would like to explore and predict 
the progress of SARS-CoV-2 from several perspectives. For example, 
how long will the current pandemic caused by SARS-CoV-2 last? 
How many confirmed cases will there be in summer? How different 
causes will affect the fatality rate later on? This paper assumes the 
axioms of probability theory proposed by the Soviet mathematician 
A. N. Kolmogorov, and we study SARS-CoV-2 using a probabilistic 
framework. We regard all the information contains randomness. For 
instance, the daily number of confirmed cases is not deterministic and 
we believe is likely better represented by a curve that goes up and down 
in a probabilistic way. “Up and down” suggests some randomness in 
the numbers and the randomness comes from various uncontrolled 
sources and the inherent unpredictability of the disease. Consequently, 
it is a challenging statistical problem to model the disease progression 
of SARS-CoV-2, especially when countries adopt different strategies to 
control the spread of the disease. Our approach to study the disease 
is to use Markov chain models. The next few subsections review basic 
concepts, advantages and limitations of Markov chains and common 
Markov chain models. Section 2 connects Markov chains with the 
SEIRD models commonly used in epidemiology. Each letter in SEIRD 
has a meaning with S for the number of susceptible, E for the number 
of exposed, I for the number of infected, R for the number of recovered 
(or immune) individuals and D for the death. In section 3, we describe a 
two person transmission model. In section 4, we extend the two person 
transmission model to a larger population. In Section 5, we propose 
potential future work and conclude the paper.

Materials and Methods

Essentials of Markov chains and conditional independence

Intuitively, a Markov Chain (MC) represents a simplified 
independence relationship. Given the present state, the future is 
independent of the past. Mathematically, a Markov Chain is a collection 
of random variables {X : t R }t

+∈  where R [0, )+ = ∞  and they satisfy the 
following relation, where a.s. here and elsewhere, stands for almost 
surely and A is a subset of the state space of Xt.

t 1 t 1 t t 1P(X A | X ,...,X ) P(X A | X )− −∈ = ∈  a.s.

A Markov chain is called homogenous (HMC) if t t 1P(X A | X )−∈  
does not depend on t. As an example, this means that t t 1X | X −  has the 
same distribution as 1 0X | X . As a concrete example, consider a die-hard 
gambler deciding whether to continue to bet depends only on whether 

he has money or not, regardless of how many games he has played and 
the total number of games is interpreted as “time” here. In this case 
A is the event whether the gambler bets again at time t and Xt is the 
amount of money he/she has at time t-1. A Markov chain is called non-
homogenous (NHMC) if 1 t 1P(X | X )−  depends on t. More generally, we 
can define the Markovian structures on graphs, which is the theoretical 
foundation for graphical models. Formally, we say X1 and X2 are 
independent conditioned on 3 n{X ,...,X }  if for any sets A1 and A2:

1 1 2 2 3 n 1 1 3 n 2 2 3 nP(X A ,X A | X ,...,X ) P(X A | X ,....X ) P(X A | X ,..., X )∈ ∈ = ∈ ∈  a.s.

The conditional probability 1 t 1P(X | X )−  is called the transition kernel 
of the Markov chain. For example, t t 1 P(X j | X i) 0.5−= = =  means that the 
probability is 0.5 going from state i to state j. For more details and 
mathematical treatments on Markov chains [4].

Examples, advantages and limitations of Markov chains

Conditioning is one of the most important concepts in probability 
and Markov chain is the simplest and perhaps the most widely used 
probability model that exploits heavily on conditioning. Many 
interesting natural phenomenons can be simplified as a Markov chain. 
We give two examples below. 

• The Bernoulli-Laplace model in physics describes the gas 
exchange in an airtight container Imagine there are 2 containers with a 
wooden board blocking them. One container has k red balls (a kind of 
gas) and the other contains k blue balls (another kind of gas). Suppose a 
swap is made at random with 1 ball each from of the two urns, i.e., pick 
one from the red container and another one from the blue container, 
and then swap them. At the t th swap, the distribution of balls in each 
container depends only on the number of balls at the (t -1)th swap and 

• Brownian motion is derived as the limiting case of a Markov 
chain and describes the random motion of particles suspended in 
a fluid resulting from their collision with the fast-moving molecules 
in the fluid. Figure 2 is an example of Brownian motion on the plane 

is independent of the previous (t -2).
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with different colors representing different times. For example, 
red points correspond to movements from t=0 to t=200. Precisely, 
consider a particle starting at the point (0, 0). At each time, it has 4 
possible movements: up, down, left and right and each movement has 
probability 1/4. Knowing its location at time (t-1), the location at time t 
is independent of all previous locations. Such phenomenon describes a 
sense of “total randomness” in real life.

There are more phenomenons in real life that are simplified and 
studied using a Markov chain model. Markov chain is also applied to 
epidemiology and section 2 shows one of the models in epidemiology 
known as the SEIRD model is a realization of Markov chains; see section 
4 for further details. Despite the success and intriguing simplicity of 
Markov chains, they have several limitations for real applications 
(Figures  1 and 2).

• The real world is complicated, and oftentimes a Markov chain 
model can only accommodate very few covariates. Consequently, MC 
is frequently unable to model adequately the process we observe in 
practice. 

• Markov chains are based on the “conditional independence” 
proposed by Feller. In real life, existence of such a relation is not obvious 
and can be problematic to validate the assumption that conditional 
independence holds in practice.

Stochastic models for SARS-CoV-2

Our main interests are to predict future trends of the disease with 
accuracy and reliability. In our case, immediate questions of interest 
for our study are given the current SARS-CoV-2 data, what are the 
expected numbers of infected, suspectible, latent and the recovered 
subjects from SARS-CoV-2 in the future? More precisely, can we use the 
current data and use a model to predict the number of cases 3 months 
or even years from now? To do this, we use a model and postulate the 

stochastic nature of SARS-CoV-2. We could either explore this issue 
from a biological point of view and ask, for example, how SARS-
CoV-2 attacks human tissues, and what kinds of cells are able to defend 
themselves from being attacked? Or, we can model the transmission of 
SARS-CoV-2. In this paper, we consider only the latter. The concept 
of transmission in epidemiology and public health can be abstracted 
as transition kernels in mathematics. Therefore, the question becomes 
how do we use Markov chains to model SARS-CoV-2. More generally, 
the research questions include the following: 

•	 Can we model the transmission of SARS-CoV-2 as a Markov 
chain? 

•	 What assumptions do we have to make? 

•	 Can we simulate the transition process of SARS-CoV-2 based 
on Markov chains?

•	 How can we trust the results given by Markov chains? 

•	 Will there be more refined Markov structures or other 
stochastic structures in SARS-CoV-2?

The first three questions are about constructing models and 
identifying model assumptions. Question (4) is about advantages 
and drawbacks of Markov chains which we have discussed in the 
previous sections. The last question is more sophisticated and can be 
answered using graphical models. Some key assumptions will be stated 
in later sections and models will be built based on them. For the last 
question, another stochastic structure that we can explore is the spatial 
distribution of SARS-CoV-2. Understanding the spatial distribution 
allows us to answer question like what is the distribution of SARS-
CoV-2 cases in the U.S.? Other interesting questions can be asked. For 
instance, are there clusters in the locations of confirmed SARS-CoV-2 
cases ? Some states have higher confirmed cases and others are lower. 
Is it due to human intervention (policy, state culture, etc.) or is it due 
to randomness ? Such hypotheses can be tested under the framework 
of Poisson random measure, which is a powerful tool for testing spatial 
homogeneity assumptions.

SEIRD model and Markov chains

Epidemiologists frequently use models to study disease 
development and progression over time. Some are complicated and 
require advanced statistical techniques. This section discusses common 
models for studying SARS-CoV-2, including the pros and cons, and 
their connections with Markov chains for each of the models [5,6].

Basic concepts of SEIRD model: In epidemiology, SIRD models 
and its variations are applied to predict the future trend of SARS-
CoV-2. A variation of SIR, which is more commonly used, is called 
SEIRD where the letter E additionally stands for exposed. The SIERD 
model is defined by a system of differential equations:

ds IS
dt

= −β

dE EIS
dt dl

= −β

dl E I
dt l i

= −

dR I
dt i

= −θ

dD
dt

=θ

where t is time, β is the transmission rate of the disease, l is the 
latent period of the disease, θ is the death rate and i is the infectious 
period. These equations model a disease within a closed population, 
even though that population grows or shrinks birth and death process.

Figure 1: Bernoulli-Laplace model.

Figure 2: Brownian motion on the plane for t from 0 to 2000.
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the next states for the two people can be determined by a probability 
transition matrix. The matrix is 16 × 16 and its elements are the 
transition probabilities for a person to move from one state to another. 
Here is an example with the following assumptions for the two person 
transmission model to show how the transition kernel is constructed.

• If one of the two is already infected and the other is healthy, then 
the healthy one gets infected with probability 0.3 and the healthy one 
stays healthy with probability 0.7.

• For the infected one, regardless of the state the other has, he/she 
dies with probability 0.05 and recovers with probability 0.16 and stays 
infected with probability 0.79. 

• If one has died, then he dies forever.

• If one gets immune, then he/she will never get infected again. 

• Then a direct calculation shows the transition kernel is: For 
example, PHC,HC=0.55 (element in (2,2)) means if the first person is 
healthy and the other is infected, then the probability is 0.7 × 0.79 ≈ 
0.55 that the first stays healthy and the other stays infected. As another 
example, if PHC,CC=0.24 (element in (2,6)), this means that if the first 
person is healthy and the other is infected, then the probability is 0.3 × 
0.79 ≈ 0.24 that both of them are infected.

Long-term behavior

We are interested in the long term behavior of the transition matrix. 
Given a initial state (say, HC, one is healthy and the other is infected), 
what are the states for the 2 people in the long run? Simulation results 
are below. The left figure is the graphical representation of the 16 × 16 
transition matrix. The darker the color, the higher is the probability 
of attaining that particular state (column indexes) for a patient in the 
current state (row indexes). Diagonal elements have higher probabilities 
which means the system prefers current state than other states (Figures 
4 and 5). 

Connections between SEIRD model and Markov chains

The solution to the above differential equations, if it exists, is unique 
and deterministic. When the solution to the above equations exists, it 
is a collection of 5 functions, and each is a function of the time t. These 
differential equations are continuous operators and they are solved after 
they are discretized over the time space t, where t ranges over the natural 
number N={0, 1, 2,.....}. For each time point t0, the state space (M, M) is 
(N5,B (N5) where M=B (N5) stands for the collection of all subsets of N5 
and (S, E, I, R, D) is a 5-dimensional random vector taking values in N5. 
Given all other model parameters (i.e., reproductive number, infectious 
rate, recover rate, etc.), the system of differential equations assume that 
the number of cases at the (t+1)th day is independent of the number of 
cases before (t-1)th day. The only difference between a SEIRD model 
and a Markov chain is that the latter is random and the former is totally 
deterministic, where the transition kernel is a Dirac delta measure.

A numerical example based on SARS-CoV-2

To demonstrate the utility of the SEIR model, we provide an 
example with user-supplied initial values. The initial values are:

• Suspected S0: 327200000. We assume the number of the suspected 
is the current population of the U.S. 

• Infected I0: 1. We assume there is only one individual that is 
infected at the beginning (t=0). 

• Recovered R0: 0. We assume no one is immune (recovered) at t=0. 

• Exposed E0: 10. We suppose there are 10 exposed individuals at t=0.

time trends of the numbers of death, recovered and infected individuals 
over time. It is generated by R 3.6.1. From Figure 3, we observed that 
the infected number increases at first and then declines. There is a time 
lag between the number of recovered cases and the number of cases of 
death (Figure 3).

Two person transmission mode

This section serves as prelude to the next section where we build 
more complicated models [7,8]. Suppose the state space of a person’s 
condition is { H, C, D, I }, where H, C, D, I stands for healthy, SARS-
CoV-2 (infected), dead and immune (recovered) respectively. For a two 
person transmission model, there are 16 possible states in total:{HH
,HC,HD,HI,CH,CC,CD,CI,DH,DC,DD,DI,IH,IC,ID,II}. A two person 
transmission model assumes that given current states of two people, 

Figure 3: Predicted numbers from the SEIRD model for t from 0 to 500. Note:   
( ) Infected; ( ) Death; ( ) Recovered.

Figure 4: Transition kernel for the two person transmission model.

Figure 5: Transition matrix (left) and long term transition matrix (right).

• Death D : 0. We assume no one is dead at t=0. Figure 3 shows the
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Top left element means the probability is 1 from state HH to state 
HH and is 0 from HH to any other 15 states. The element P2,2 means 
the probability from state HC to HC is 0.55. The right figure shows the 
long term behavior of the transition matrix. If the transition matrix is 
P, then the long term behavior matrix is P∞=limn→∞ Pn. Convergence 
and other theoretical properties are guaranteed by PerronFrobenius 
theorem. The elements of the long term matrix P∞ are obtained by 
multiplying P repeatedly without end. For our example, the long term 
matrix (Figure 6). 

For example, the element P∞
2,3 means starting from the initial state 

HC, on average, the probability is 0.08 that one person stays healthy 
and the other is dead. “On average” corresponds to “long-term”. Except 
for absorbing states (states with transition probability 1), state II has 
a significantly larger probability among all initial 16 states, suggesting 
that herd immune is mostly possible in this model.

Non-homogeneous Markov chain model

• In this section, a Non-Homogeneous Markov Chain (NHMC) 
model is applied to simulate the transmission of SARS-CoV-2 
within a region under certain conditions. This model is 
inspired by Conway’s game of life and the work in [9]. 

• This model requires several assumptions:

• The whole region is a p × p grid, i.e., each cell represents a 
person (or a group of people). 

• Each has 5 states: Healthy (H), Latent (L), SARS-CoV-2 (C) (or 
infected), Dead (D) and Immune (I) (or recovered). Note that 
“latent” stands for a person is infected but no on-site symptom 
is observed and SARS-CoV-2 means the symptom is observed. 

• Each is essentially fixed at his own cell (i.e. as time goes by, the 
individual doesn’t move to other cells). 

• After each time unit (a week, a month, etc.), the individual 
changes state from i to j where i, j ∈ {H, L, C, D, I}. 

• The transition probability of a person is determined by the 
neighbors surrounding him (i.e., first order relation).

Model set-up: In this section, we introduce basic elements of the 
model: initial state, transition kernel and one-step update. We use the 
JHU dataset to give point estimates of the transition kernel. The JHU 
dataset contains information on state-level confirmed, recovered and 
dead cases in the U.S. For more details on how the data is collected and 
more visualizations on the dataset. 

Initial state: In this subsection, we generate the initial state of the 

model randomly. We suppose the grid is 88 × 88, which means that 
there are 7744 individuals. According to current infection rate in the 
US (667,000 out of 390,000,000), 0.1% people are in state C (have 
COVID19) and 0.3% people are in state L (who are infected and no 
on-site symptoms is observed). The choice of 0.3% is based on the 
personal communication with Dr. Ramirez in Biostat 244. Others are 
in state H. We generate the initial states of individuals independently: 
with probability 0.1%, the individual has detectable symptoms, with 
probability 0.3%, the individual is infected but has no detectable 
symptoms and with probability 99.6%, the individual is healthy. Figure 
7 displays the initial state of the non-homogoneous Markov chain, 
where color purple stands for H, light green stands for L and yellow 
stands for C: From Figure 7, we observe there are 9 people in state C 
(yellow), 18 people in state L (light green) and 7717 people in state H 
(purple). People in state L and C are uniformly distributed across the 
grid and we are interested in what the grid will be after a long term 
(Figure 7).

Transition kernel (transition probability matrix)

To determine the transition kernel of our model, we have to borrow 
existing results for some key probabilities. For example,

Fatality rate: By April 16, there are 27,697 confirmed cases in 
California and 956 deaths due to SARS-CoV-2. If a person has detectable 
symptoms, the probability of dying can be estimated as 956/27697 
which is 0.034. Although the rate for individual is time-dependent, we 
assume it is homogeneous.

Recover rate: This corresponds to the transition probability from 
state C to state I. There are 1,473 recovered cases and 27,697 confirmed 
cases in California, so the recover rate is 0.053. We also assume the rate is 
homogeneous, i.e., independent of age, infected time and other factors. 

then he never gets infected again. Using the language of Markov chain, 
state I is called absorbing.

Infection rate: This is similar to the R0 value in epidemiology. 
In this model, we calculated the state of 8 neighbors surrounding a 
person (3 and 5 if he is in the corner and border), summing up the 
number of state C (COVID) and L (Latent). The probability of from 
healthy to infected is an increasing function of that sum. We set the 
base infectious rate to be 0.8, that is, if one healthy person has only one 
infected neighbor (on-site symptom or latent), then in the next time 

to state L). If he is surrounded by k infected people, the probability is 
1-0.8 k and 0 if no infected neighbor.

Figure 6: Long term transition matrix P∞ for the two person transmission 
model.

Figure 7: Initial state of NHMC at t=0.

Similar to previous section, we assume pII=1. If a person recovers,

unit, the probability of him getting infected is 1-0.8=0.2 (from state H
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Results

The long term behavior does not tell how individual is affected 
during the transmission of SARS-CoV-2. This subsection illustrates 
how SARS-CoV-2 spreads from a microscopic point of view, and 
Figure 9 gives details about the intermediate period of the whole system 

infection process with different colors representing different states: 

• Purple: H (healthy) 

• Light green: L (latent or without detectable symptoms)

 • Yellow: C (COVID or infected) 

• Green: I (immune or recovered) 

• Blue: D (dead) 

The x-axis and y-axis represent the location of individuals. For 
example, the (88, 0) point in the top-left panel means the individual 
was healthy at the early stage. In the top-right panel, the (88, 0) point 
became yellow, suggesting that the individual was infected at the middle 
stage. The individual got immune according to the bottom two panels. 
Different plots in Figure 9 correspond to different periods and they give 
us valuable details on how exactly SARS-CoV-2 spreads out (Figure 9).

• Top-left (t ≤ 10): The early stage of the model. Comparing it with 
the initial state, more people are infected and many of them don’t have 
detectable symptoms (in state L). Therefore, the detectable number is 
still small. Further, individuals are likely unable to realize that many of 

them are already infected.
 • Top-right (10<t ≤ 20): The middle stage of the model. It is the 

outbreak period of SARS-CoV-2 where many individuals are infected 
(in state C or L) and almost half of them have detectable symptoms. 
The number of death is increasing and we speculate that individuals are 

getting panic about the disease. 

Given the information of neighbors, the transition kernel for an 
individual is a 5 × 5 matrix with the following form:

H L C D I
H pHH pHL 0 0 0
L 0 pLL pLC 0 0
C 0 0 pCC pCD pCI
D 0 0 0 1 0
I 0 0 0 0 1

 
 
 
 
 
 
 
  

Importantly, this matrix is different from those in Markov chains 
that are homogeneous in time because we are conditioning on the state 
of one’s neighbors.

One-step update: Before each update, we need information on the 
locations of infected and latent people to calculate the transition kernel, 
and the computation steps are:

1. Scan current states for all individuals in the grid. It requires p2 

operations (in our case, p2=882=7744 individuals). 

2. For each individual, determine the information of the 8 neighbors 
(whether they are in state L or C). This process requires 8 operations for 
each individual. 

3. Derive the transition kernel for each individual based on current 
state and this operation requires p2 operations. 

4. For each individual associated with a unique transition kernel, 
we determine the next state through sampling. It requires 5 operations 
for each state and the total number of operations is 5p2. Putting the 
above operations all together, the time complexity for each update is 
approximately 15p2 , or O(p2) (time complexity quantifies the amount 
of operations required in each update).

Simulation study: Simulation study To better understand how a 
Non-Homogeneous Markov Chain (NHMC) mimics the transmission 
of SARS-CoV-2, we conduct the following simulation study. The codes 
are written in Python 3.7.1. We ran 50 iterations (t=1,...,50) because 
when t is more than 50, the chain shows no significant changes of states, 
suggesting the chain has become stable.

Long term behavior: The long term behavior of a Markov chain 
implies how the system will be after a long period of time. Figure 8 
shows how the system enters a stable distribution after approximately 
50 time units. Although the number of people in state C (people with 
detectable symptoms) is only a half of the number of infected people 
(in state C or L), both of them reach their peak at t=20. As t increases, 
most people recovered and others are dead. When t is greater than 40, 
the chain enters a steady state, no significant fluctuation in confirmed 
cases, recovered or dead. There are more than 6000 people (out of 7744) 
get recovered and approximately 1000 of them are dead. The graph is 
similar to those from the SEIRD models and it suggests a faster outbreak 
of SARS-CoV-2 (Figure 8). 

Figure 9: Early, middle, late and stationary states of SARS-CoV-2 as modelled 
by a NHMC.

Figure 8: Long term behaviour of NHMC for t from 0 to 50. Note: ( ) COVID;  
( ) Healthy; ( ) Immune; ( )Dead ; ( ) All Infected.

to the results from the SEIRD models, non-homogeneous Markov 
chain model gives similar results except for the shorter outbreak period.

• Bottom-left (20<t ≤ 35): The late stage of the model. The number of 
death continues increasing. More and more individuals get recovered, 
which is a signal that SARS-CoV-2 may disappear (or become less 
severe) sooner or later. 

• Bottom-right (35<t): The stationary stage of the model. The 
recovered, dead and infected rates become steady and there were no 
more significant fluctuations. SARS-CoV-2 seems to have almost 
disappeared after about 1000 lives were lost to the disease.

The model suggests that the number of patients with detectable 
symptoms is not reliable (top-left), the outbreak of SARS-CoV-2 is 
fast (top-right), a huge number of death is inevitable (bottom-left) and 
SARS-CoV-2 will disappear at some point (bottom-right). Compared 
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Discussion
The previous sections suggest Markov chain model are useful 

to model a dynamic system such as in the disease progression and 
epidemiology. As pointed out in section 1, they are not without several 
drawbacks. For example, it only takes advantage of the information at 
the (t-1)th state, regardless of the previous (t-2) states. One alternative 

the current state.

Non-Markov structure: Polynomial regression models

A polynomial regression model assumes the confirmed cases 
of SARS-CoV-2 is a polynomial function of time. After we choose 
the degree of the polynomial to be fitted, confidence intervals can be 
constructed at selected time points. For example, if we use SARS-CoV-2 
data for Los Angeles (LA) and the selected degree of the polynomial is 
4, provide the following fit: 

2 3 4(t) max(0, 865 30720 210958 423359 181201 )f t t t t= − + − + −   

A 80% confidence band is given. The polynomial model is an 
example of curve fitting model described by Brookmeyer  [10]. Though 
it uses all information from the past, the variance of the fitted values can 
be high. As the degree increases, we are fitting noises instead of the data 
itself. Figure 10 shows the fit, along with a 80% confidence band for the 
fitted curve for the Los Angeles data from Jan, 22, 2020 (t=0) to June, 
19, 2020 (t=1) (Figure 10).

Spatial distribution

• What is the spatial distribution of SARS-CoV-2 in the U.S. (or 
California)? 

• Are the cases of SARS-CoV-2 randomly distributed? Such 
questions require more detailed individual-level information on 
patients. They include history of their disease, where they have been 
to and where they live. The answers to these questions are difficult to 
collect which means that we have to make more assumptions to make 
our modefls more pflausfibfle.

natural to construct a continuous time model. For example, instead of 
updating confirmed cases day-by-day, we could collect real-time data. 
This is very useful because this means that once a person has suspect 
symptoms, we can update the individual disease status instantaneously.

Conclusion

Similar to previous subsections, data of this type is difficult to 
obtain. Our options are either to make more assumptions or perform 
another simulation study based on continuous Markov chains before 
data collection. In conclusion, under the assumption of conditional 
independence, Markov chains are useful to simulate the dynamic 
process of the transmission of SARS-CoV-2 and they allow us to 
observe the process from a microscopic point of view. Despite of its 
convenience and usefulness, there are several additional works can be 
done such as extending the discrete time model to continuous time, 
exploring the spatial distribution of SARS-CoV-2, etc.
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Figure 10: Polynomial regression for the confirmed cases in California. 
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is a polynomial regression where we use all information from t=0 to

In the non-homogenous Markov chain model, we assume the world 
is a p × p grid which is not realistic. Two natural questions are: 

Continuous time models
All previous models (SEIRD, two person transmission, non-

homogeneous Markov chain, polynomial regression) are discrete time 
models. Though SEIRD is defined by a system of differential equations 
over a continuous time space, we have to discretize them to do 
simulations. 

 This means that there is loss of information and it is more 
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