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Abstract

Alzheimer's Disease (AD) has no cure yet and will approach 150 million cases in 2050. Pathologically, it is
characterized by intracellular neurofibrillary tangles, extracellular amyloidal protein and brain atrophy.

The proposed AD hypothesis follows: Use four hypotheses, step by step, to conclude this AD hypothesis: “Most
neurodegenerations are caused by abnormal protein (polypeptides) synthesis in neuronal cells.” The rationale is the
following: Memory activities require energy and protein synthesis. The Reactive Oxygen Species (ROS) could
damage neuronal DNA during protein synthesis, and the most DNA damage site is the "enhancer region," which
controls the activity of genes when DNA is mistakenly repaired. The mistakenly repaired DNA strand served as a
template for future mRNA, which could synthesize abnormal proteins, such as amyloids or tau. The mitochondria
gradually lose their functions by reducing the energy production of the ATP and creating more ROS. The
"mitochondria dysfunction" increase as human age. This AD hypothesis links the mitochondria dysfunction
hypothesis and the amyloid cascade hypothesis.

The Late-onset AD (LOAD) progression timeline is not linear. Instead, it is an exponential degeneration, implying
the LOAD progression is a positive feedback loop (vicious cycle). A good lifestyle may slow down disease
progression.
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Introduction

Human evolution
The Central Nervous System (CNS) is the crucial organ in the

human body. It has a different evolutional path. The CNS controls all
body functions and evolution offers special survival privileges
compared to normal cells. Such as Mechanical protection: Skull and
Cerebrospinal Fluid (CSF) and Biological protections: neurons are
postmitotic cells with no neuronal division and replication to avoid
cancer. The Brain Blood Barrier (BBB) filters out unwanted pathogens
and chemicals and the CNS has faults tolerance with multiple
connections between neurons by synapses.

The skull protects the CNS from mechanical impact and blocks out
ultraviolet light radiation. The CSF is a mechanical shock absorber
and removes waste products from the brain.

Using cancer incidence to explain neuronal biological protections:
For cancer to develop, it usually requires two incidences:

1. First incident is DNA mutation is mainly occurs during cell
division. For example, the large intestine has more than 5-8 times
more mutations than the small intestine. However, there is a 50-
fold more cancer incidence in the large intestine than in the small
intestine. Most colon cancer occurs in the large intestine and
cancer incidences and cell divisions strongly correlate [1,2].

2. The other incident is infectious viruses entering the cells. For
example, the absolute majority of cervical cancer can be
prevented by the HPV vaccine because the HPV vaccine
eradicates Human Papillomavirus (HPV) [3]. Therefore, no HPV
virus is available to infect the cervical cell. Hence no cervical
cancer would develop even if the cervical cell's DNA breaks.

Compared to other dividable cells, the neuron becomes terminally
differentiated. The postmitotic cells are not divided, which supposedly
avoids DNA mutation. However, the neuron is mutated by imperfect
DNA repair, in contrast to the dividable cell mutation during the cell
cycle. The Brain Blood Barrier (BBB) tight junction filters out
pathogens, which prevents the pathogen from infecting the neuronal
cell for cancer.

Most internet communications are mesh networks. The sending
message could reach the receiving destination via different nodes if
the existing node breaks down. Therefore, communication can be
maintained via an alternative route. Neurons have many axons and
dendrites connected to other neurons via synapses. If the existing
connecting synapse breaks down, the communication between neurons
could go through alternative neuronal networks. Thus, we have
neuroplasticity.

Mammalian cells replicate if damaged. However, there is more of a
probability of cancer developing if there is too much replication.
There is a limited number of normal somatic cell replication, and the
Hayflick limit is about 40-60 times division and replication, which is
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related to telomere length shortening [4,5]. The telomere length is
shortened after each division, with no further division possible if the
telomere is too short. Therefore, the human body system shuts down
with age.

USA life expectancy was 39 years in 1883 [6]. Based on available
records, the Chinese Emperor's average life was 39 years in the last
2,000 years. The USA's life expectancy increased after the industrial
revolution and is now 78 years. Besides infection, the prevalent
diseases that have impacted human life are neurodegeneration, cancer,
and cardiovascular diseases. All these diseases have no significant
impact on humans if the life expectancy is less than 40 years.
However, those diseases have substantial implications on modern
society because human lives longer. The percentage of people with
Alzheimer's dementia increases by 32% of people aged 85 and older
who have AD [7]. There is no known cure for AD. Human evolution
has not caught up with the current biological requirements.

Literature Review

Hypothesis for neuron DNA breakage and reparation
Four proposed hypotheses regarding neurodegeneration

Memory storage retrieval and memory consolidation require
protein synthesis: In an animal model, ongoing protein synthesis is
needed to enable memory consolidation and reconsolidation. Long-
term memory formation requires new protein synthesis [8-15].

We could look at the analogy of computer memory, where Random
Access Memory (RAM) needs to change capacitance or hard disc
storage requires altering the magnetic property. It requires some
energy and activity to access or store information. In biology, it
requires energy, ATP and protein synthesis. One of the neuron's
functions is synthesizing necessary proteins for memory activities.

Free radicals could cause neuronal DNA breakage during the
synthesis of protein: Free radicals are chemical species containing
one or more unpaired electrons in their outer orbitals that are toxic by-
products of aerobic metabolism, causing oxidative damage. The
fidelity of the genomes in all aerobic cells is continuously challenged
by Reactive Oxygen Species (ROS). ROS can attack the cell's vital
components like DNA and proteins. DNA damage is mostly generated
by mitochondrial respiration. Oxidative stress accumulates in the
DNA of the human brain, especially in the mitochondrial DNA. Many
neurodegenerative disorders are strongly associated with the
accumulation of oxidative damage [16-21].

In the Suberbielle study, mice explored a new environment filled
with unfamiliar sights, smells, and textures for two hours. After
exploring the new environment, the group increased Double-strand
Breaks (DSBs) in multiple regions involved in learning and memory.
It was most abundant in the dentate gyrus. More specifically, the
neuronal activity by stimulation increased the DSBs in relevant but not
in irrelevant networks. DNA repair is late with a delay. The marker is
γH2A.X to identify DSBs [22]. This study shows that DNA breaks
after access and retrieves memory.

Neuron DNA mutation is due to faulty DNA repairment during
protein synthesis, in contrast to typical cell DNA mutation by cell
division during the cell cycle:

Acetylation of histone tails neutralizes their positive charge
resulting in the loosening of histones and the associated DNA, and the

loose chromatin structure promotes transcriptional activation [23]. The 
binding of histones to the DNA and its organization into higher-order 
chromatin structures dramatically protects the DNA against strand 
breaks and the cellular defense against the induction of oxidative DNA 
damage [24]. Most dividable cell DNA breaks when the DNA unzips 
by splitting the DNA into separate strands during cell replication or 
partially unwound non-dividable DNA (transcription bubble) while 
copying DNA into mRNA for protein synthesis. In the pre-mRNAs, 
these splicing sequences make splicing susceptible to mutations [25].

The neuron either apoptosis or mutates if the neuronal DNA repair 
processes fail. The damaged neurons were often found within 
"enhancers," which control the activity of nearby genes. Implying 
mutation occurs during protein synthesis rather than cell division 
during the cell cycle. It also implies that defects in the repair process, 
not the DNA damage itself, DSBs may result from gene transcription. 
DNA DSBs capable of translocating are enriched around active gene 
Transcription Start Sites (TSSs). Neuronal DNA is continuously 
broken and repaired in a non-random fashion [26-28].

Alzheimer’s disease
Free Radicals: Free radicals could destroy invading pathogenic 

microbes as a body defense mechanism [16]. Antioxidants neutralize 
free radicals by giving up some of their own electrons. The bulk of 
neuronal DNA damage is acquired by oxidative DNA damage [20]. 
Most organic radicals possess short lifetimes and quickly undergo 
oxidation [29]. The studies on the effectiveness of antioxidant 
supplementation therapy showed conflicting results [30]. The most 
promising AD treatment antioxidants were Vitamin E, coenzyme Q10 
(CoQ10), melatonin, polyphenols, curcumin, and selenium [31]. 
Beydoun's study analyzed levels of antioxidants and carotenoids in the 
blood rather than carried out generally by analyzing dietary intake 
levels. The Serum antioxidant vitamins and carotenoids may protect 
against neurodegeneration [32]. When introducing the catalyst 
(TH10785) into the enzyme (OGG1), the enzyme becomes ten times 
more effective at repairing oxidative DNA damage [33].

Mitochondria
One of the main mitochondrial functions is energy production, ATP. 

Mitochondrial DNA is a double-stranded supercoiled ring molecule 
that does not contain histones [34-37]. In healthy organisms, the 
production of free radicals is low. The antioxidant defense systems 
quickly remove ROS before they cause damage to the cell [16]. The 
mitochondrial function and cognitive function may be maintained if 
protected from ROS [21].

Mitochondrial DNA generally has more damage than nuclear DNA 
due partly to its proximity to sources of ROS production and without 
histone protection [35,36]. Damaged mitochondrial results in energy 
metabolism dysfunction, leading to decreased ATP production and 
increased ROS [37]. Oxidative stress accumulates the mitochondrial 
DNA and plays a critical role in neurological disorders, including 
Alzheimer's disease [20].

DNA breaks and repairs: If DNA repair is compromised; it will 
impact the nervous system. The types of causative DNA damage are 
associated with transcription or oxidative metabolism [38]. In Wu's 
study, neurons accumulate high levels of DNA SSBs located within 
enhancers at or near CpG dinucleotides and sites of DNA 
demethylation. They suggest in patients with defective SSBs repair 
[26].
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Abnormal protein: The Amyloid-β (Aβ) is a fragment of the 
amyloid precursor protein (APP) produced by brain neurons. Two 
subsequent proteolytic cleavages of APP by β-secretase and γ-
secretase generate Aβ [39].

In the Chang study, another polypeptide source is misfolding and 
aggregation of disease-specific proteins. The amyloid fibril composed 
of a 135 amino acid C-terminal fragment of TMEM106B is common 
in distinct human neurodegenerative diseases, including abnormal 
aggregation of TDP-43, tau, or α-synuclein protein [40].

ROS can damage virtually any cellular component and protein 
synthesis. Results in the production of aberrant protein molecules or 
the generation of sub-optimal protein.

Mutations in both the APP and the PSEN genes cause Familial 
Alzheimer's disease (FAD) with autosomal dominant inheritance and 
early onset of disease. The analysis of the disease features in FAD and 
Sporadic AD (SAD) populations indicates that FAD and SAD share 
the same pathophysiology and progression [41-45].

In Lee's study, Neuronal damage characteristic of Alzheimer's 
disease takes root inside cells and well before these thread-like 
amyloid plaques fully form and clump together in the brain [46]. They 
observed almost-fully formed plaques inside some damaged neurons 
of AD. They also explain why many experimental therapies designed 
to remove amyloid plaques have failed to stop disease progression. 
The brain cells are already crippled before the plaques fully form 
outside the cell. In this study, the source of amyloids inside neurons is 
most likely synthesized by neuronal DNA directly.

The hypothesis for another source of polypeptide in the CNS is 
that:

The neuron DNA may mutate due to faulty DNA repair, and it could 
produce abnormal mRNA code for polypeptides if genes are mutated 
and consequently produce an alternative polypeptide sequence:

The mutated DNA has the following consequences:

Once such repaired mistakes are established, unfortunately, the 
incorrectly sequenced DNA strand serves as a template for future 
mRNA [47]

A single mRNA could produce multiple copies of the 
corresponding polypeptides [48]

The deposition of Aβ in Alzheimer's disease eventually leads to Tau 
tangles and neurodegeneration. Düzel suggests that the tau load in the 
brain impairs memory function only when the amyloid accumulation is 
also high [49,50].

CNS inflammation: Acute inflammation in the brain is a well-
established defense against infection, toxins, and injury. Innate 
immune activation and inflammatory response are driven by microglial 
cells. Aβ species can trigger an inflammatory response in microglial 
cells. Oxidative stress can lead to chronic inflammation. The 
inflammatory process induces oxidative stress and reduces cellular 
antioxidant capacity. Late-onset AD is associated with strong innate 
immune system activation [51-57].

Central nervous system
Hippocampus: The hippocampus is essential in forming, 

organizing, storing new memories, and connecting to other memories. 
The hippocampal atrophy rate is a reliable biomarker of disease stage

and progression [58,59]. Hippocampal atrophy on Magnetic
Resonance Imaging (MRI) is an early characteristic of Alzheimer's
disease [60]. The hippocampus is critical for creating new memories;
it's one of the first regions of the brain to deteriorate as we get older
and much more severely in Alzheimer's disease [61].

In an analogy to a computer, the hippocampus, like Random Access
Memory (RAM), the RAM is short-term memory with high traffic of
information input and output. The hippocampus is busy with memory
creation and retrieving. Therefore, it requires lots of protein synthesis.
There is more chance of DNA breakage if ROS presents, and the
possible consequence is apoptosis. Neural Stem Cells (NSC) reside in
the Sub-ventricular Zone (SVZ) of the adult human brain and the
dentate gyrus of the adult mammalian hippocampus [62]. The
regenerative capacity of the hippocampus also subsides with age [63].
The new neural progenitor cells may not be sufficient to replenish the
death of the hippocampus neuron. Therefore, the net number of
neurons in the hippocampus is reduced with aging.

Individuals with AD can typically remember events in the distant
past better than those in the immediate past because short-term
memories rely more on the hippocampus. In contrast, familiar memory
is stored in another brain region.

Microglial cells: Microglia are involved in synaptic organization,
trophic neuronal support during development, phagocytosis of
apoptotic cells in the developing brain, myelin turnover, control of
neuronal excitability, phagocytic debris removal and brain protection
and repair [52]. The advanced Late-onset AD (LOAD) eventually
loses microglia's total function [64].

BBB permeability: The vascular blood-brain barrier is a highly
regulated interface between the blood and brain. With inflammation,
the vascular blood-brain barrier becomes more permeable to solutes
and undergoes an increase in lymphocyte trafficking. Systemic
inflammation impairs blood-brain barrier function [65,66].

Lifestyle-sleep: Healthy sleep habits help prevent the protein
Amyloid-Beta from forming clumps and require a circadian rhythm
for daily oscillation in Aβ42 clearance. AD has a bi-directional
relationship with circadian disruption with sleep disturbances starting
years before disease onset [67]. Deep sleep serves a role in waste
clearance, an evolutionarily conserved core function of sleep [68]. In
an animal model of Alzheimer's disease, restoring normal sleep by
returning to normal the activity of the Thalamic Reticular Nucleus
(TRN), a brain region involved in maintaining stable sleep, reduced
the accumulation of Aβ plaques in the brain. The Alzheimer's mice
woke up 50% more times than non-Alzheimer's mice [69]. An
imbalance between Aβ neuronal production and extracellular
clearance of Aβ was associated with accumulation in plaques
[39,70,71]. A strong relationship occurs between several sleep
disturbances and the incidence of dementia over time. [67-72].

Lifestyle-exercise: Regular physical exercise diminishes BBB
permeability as it reduces oxidative stress and has anti-inflammatory
effects. Stress-free mild exercise increases hippocampal neuronal
activity and promotes adult neurogenesis in the hippocampus's dentate
gyrus [61]. Exercise training also increases brain mitochondrial
biogenesis. Aerobic exercise training reduced central arterial stiffness
and increased cerebral blood flow [73-75].

In the Irimia, et al. study The Tsimane indigenous people of the
Bolivian Amazon are exceptionally physically active; only about 1%
suffer from dementia. In contrast, 11% of people age 65 and older
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living in the United States have dementia. Their brains likely
experience far less brain atrophy than Westerners as they age [76,77].

There are many hypotheses relating to AD. There are four main AD
hypotheses as follows:

• The hypothesis is on the progression of AD pathologies states that
Aβ plaques appear first, causing hyperphosphorylation of tau,
leading to tangles and neurodegeneration [39].

• The hypothesis focuses on mitochondrial dysfunction with several
mitochondrial defects in central nervous system disorders. The
mitochondrial produce ROS that attacks tissue and causes oxidative
damage [21].

• The hypothesis is that a pathogen (virus, bacteria, prion, etc.) is the
root cause of AD [78,79]. The most likely pathogen entry to CNS is
via the permeable BBB.

• The hypothesis is that AD results from external influx of free fatty
acids (FFAs) and lipid-rich lipoproteins into the brain following
disruption of the BBB [80].

This AD hypothesis links the mitochondrial dysfunction hypothesis
and the amyloid cascade hypothesis. The infectious hypothesis and the
lipid invasion hypothesis rely on the permeability of BBB.

Alzheimer's disease is a complex disease not caused by a single
factor. However, oxidational stress is the predominant driver of AD.
For dividable cells, the DNA may break after DNA is unzipped for
cell replication. Cancer may develop if the DNA repairment is
imperfect. For non-dividable cells, such as neurons, the DNA is
unzipped partially for protein synthesis and may break. The DNA may
mutate if the repair process is not perfect. The imperfect repaired
DNA strand serves as a template for future mRNA, which could
synthesize an abnormal protein. The relationship between
compromised DNA repair and neurodegeneration was first suggested
by Cleaver [18, 81]. Use four individual hypotheses, step by step, to
conclude this AD hypothesis, “Most neurodegenerations are caused by
abnormal protein (polypeptides) synthesis in neuronal cells.”

Using the hippocampus explains this AD hypothesis: Memory
activity requires protein synthesis. The ROS is a by-product of aerobic
metabolism, the oxidative damage accumulated in mitochondria with
age. The mitochondria gradually lose their functions by reducing ATP
production and creating more ROS, the "mitochondria dysfunction."
The ROS oxidative stress damaged neuronal DNA is mutated by
imperfect repair. The DNA damage site is mostly in the "enhance"
region during protein synthesis. The mutated DNA may be coded for
abnormal protein or fragments of protein-polypeptides, which could
be Aβ or tau. The accumulation of Aβ and tau would cause AD. The
hippocampus has the most protein synthesis activity and therefore
suffers the brunt of harm in the CNS.

The Late-onset AD (LOAD) individual loses its biological
protections as humans age. The neuron is mutated or apoptotic, as a
post-mitotic cell that supposedly does not divide and replicate. The
BBB permeability is compromised by neuroinflammation, and the
immune microglia are unable to clear the plaques or unable to
eradicate invading pathogens.

In an alternative viewpoint, an AD individual is unable to slow
down the positive feedback loop (vicious cycle) in neurodegeneration,
such as reducing the ROS and neuroinflammation and retaining
immunity. The LOAD progression timeline is not linear. Instead, it is
an exponential degeneration, which implies LOAD progression is a

positive feedback loop. For AD individuals, good sleep and daily
walking, and eating vegetables may slow down AD progression.

The interplay within CNS is in the following interactive chains
(though not a comprehensive list):

• If there is less ROS generated, then the less DNA breakage
• If there is less DNA breakage, then the less neurons would undergo

apoptosis, or the less DNA mutation occurs
• If there are less DNA mutation, then the less polypeptide produced,

such as Aβ and Tau
• If there are less abnormal polypeptides synthesis, then the less

inflammation
• If there is less inflammation, then the less ROS and the BBB may

maintain its permeability
• If the permeability of BBB is maintained, then the less pathogens

and unwanted chemicals could enter to CNS and the less insult to
CNS

• If there are less microbiome pathogens entering to CNS, then the
less neuroinflammation.

The human brain requires energy input for memory activities.
Despite comprising only 2 percent of the body, our brains consume 20
percent of the body's oxygen supply. The unfortunate side effect is
ROS because of aerobic metabolism. This oxidative stress could
initiate a CNS malfunction, cascading events that could lead to a
positive feedback degeneration loop if not stopped early.

Using the Naked Mole Rats (NMR) as an example, in the Boughey
study: NMR can live for over three decades (the average rat lifespan is
two years). Despite their long lifespan, NMRs show little
neurodegeneration. The exceptional neuronal preservation is the
improved antioxidant response, higher fidelity translation, stringent
DNA repair, and faithful proteome function [43]. The example of the
NMR retaining healthier CNS throughout its whole life shows that it is
possible for humans don't suffer neurodegeneration when they age.
However, this potential future is still a long distance away.

Conclusions
There are four hypotheses in the following:

Memory activity needs protein synthesis

DNA could be damaged by ROS while synthesizing protein

DNA mutated by imperfectly repaired during protein synthesis

The mutated DNA strand could serve as a template for future
mRNA synthesizing abnormal protein.

These four hypotheses are well known to AD scientists. However,
combining them all concludes that polypeptides cause
neurodegeneration and how it develops, or if under oxidative stress
and imperfect DNA repairment, the neuron could synthesize abnormal
protein. The abnormal protein could cause AD.

Referring to NMR, the example of the NMRs show little
neurodegeneration because of

Improved antioxidant response: Therefore, less possibility of
DNA being damaged by oxidative stress.

Stringent DNA repair: Therefore, less DNA mutation even when
the DNA breaks.

Page 4 of 6

J Alzheimers Dis Parkinsonism, an open access journal
ISSN: 2161-0460

Volume 12 • Issue 5 • 1000549

•
•

•

•

Citation: Chan JC (2022) Alzheimer’s Disease: Polypeptide Hypothesis. J Alzheimers Dis Parkinsonism 12: 549.



High fidelity protein translation: Therefore, less abnormal protein
synthesis if there is less oxidative stress and stringent DNA repair.
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