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Abstract

The ocean’s Oxygen Minimum Zone (OMZ) is known to be biogeochemical complex in terms of nutrient 
mass-balance and major element cycles. The recent reports suggesting that the ocean’s OMZ facilitate about 
25%-50%loss of nitrogen in the ocean predominantly by anammox coupled with the recent identification of 
the major contribution of DNRA to oceans NH4

+ flux, further complicates our understanding of the oceans nitrogen 
circulation and budget. Also, studies have shown that OMZ promotes the occurrence of sulfidic plumes. 
Moreover, the redox sensitivity of the ocean’s OMZ such as their active sulfate reduction and sulfide oxidation 
potential makes them important regions for the cycling of phosphorus. However, as have been predicted that 
future expansion and intensification of OMZ driven by climatic change, still the understanding of this biological 
system remains a challenge with regards to its role in the overall chemical budget of the ocean.

In this regard, we aim to provide a comprehensive summary of the overall circulation patterns of some essential 
but biologically limiting nutrients such as nitrogen, sulfur and phosphorus in this OMZ of the ocean. This will benefit 
future researches on predicting global budgets of these nutrients and their cycles related to the marine environment 
as it will help bring out a good understanding of the inextricable link among each of these limiting nutrients, as have 
been researched and reported in varied ways.

Introduction 
Dissolved Oxygen Concentration (DOC) is one of the most 

important indexes for the thriving of marine ecosystems and a key 
factor in determining the energy direction in the marine trophic levels. 
DOC is equally the powerhouse for biogeochemical cycles, ocean 
nutrient circulation, biological production near the surface and the 
degradation of organic matter in the oceans interior [1-5]. However, 
certain layers especially the mid-layers of the present-day ocean is 
characterized by a low level of dissolved oxygen. DOC decline in the 
mid-layer of the water column arises when organic matter oxidization 
exceeds its availability in less ventilated zones, thus from a hypoxic 
layer commonly referred to as the Oxygen Minimum Zone (OMZ)
[6-12]. This immerse recognition of the OMZ is as a result of its 
revealed expansion, intensity, and its role as a key to understanding the 
present unbalanced and altered nitrogen, carbon iron, phosphate cycle. 
The increase in hypoxic layers of the ocean is a direct consequence of 
global warming that causes the decline in oxygen solubility, 
concentration, and its vertical exchange in the ocean, thereby slowing 
down the oceans interior ventilation through propagated stratification 
[13,14]. As nitrate is depleted or used up, sulfate dominated reducing 
microbes assume, controlling the biogeochemical process involved in 
the cycling of marine sulfur. Also, hypoxia facilitates the greater 
recycling of Phosphorous (P), from sediments [15-20].

Literature Review
The oxygen minimum zone of the ocean occurring in mid-layer of 

the water column is hostile and inhabitable to metazoan life but is 
characterized by declined high trophic level diversity but abundant 
pelagic microfauna [21]. The microbial community in the OMZs 
possess assemblages of diverse genetic repertoire of putative sulfate, 
nitrate, and phosphate reducing bacteria whose combined metabolism 
plays intimate roles in its biogeochemical cycles and therefore which 
permits and enhances the use of alternative electron donors and 
acceptors during energy metabolism [22-30]. Specifically, OMZs are 
harbored by bacteria and archaea that arbitrate and facilitate the loss of 
oceanic fixed nitrogen to the atmosphere through denitrification and 
the recently discovered anaerobic oxidation of ammonia to N2 [31,32].

This review presents an overview of the cycling of some basic vital 
marine elements (nutrients) and how the overall declines in ocean 
oxygen concentrations affect their circulation, balance and availability 
in the ocean based on published reports [33]. It’s hoped that the 
summarized information in this article would help improve our 
understanding of OMZ involvement in the circulation of these 
nutrients. This may facilitate a realistic assessment of the short and 
long term impacts of ocean de-oxygenation on the cycling of these
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nutrients in the ocean’s OMZs, as well as predict the future budgets of
these nutrients in the ocean [34-40].

Bio-limiting nutrient circulation in the ocean’s OMZ
The availability of bio-limiting nutrients such as nitrogen,

phosphorus and sulfur other than H2O and carbon, are necessary
supporting nutrients required for primary and biological production
[41]. Biological limiting nutrients can be absorbed by primary
producers via roots from the soil and in aquatic systems directly from
solution/water to boast primary production. However, the availabilty
of these essential nutrients in the ocean is threatened by the decline in
DOC which has been observed to be facilitated by temperature
increase [42-47]. In addition, observations from four modeled based
assessment, it was shown that global warming caused declines in
marine productivity at lower altitudes, suggesting that the recycling of
these nutrients in marine environments is undoubtedly affected by
stratification of the water column [43-55]. Nitrogen limitation affected
primary production in Eastern Tropical North Atlantic (ETNA) and
Eastern Tropical South Pacific (ETSP). Despite the numerous reports
on the effects of global warming on nutrient circulation and marine
productivity, there is still low confidence and insufficient
measurement of the present and predictions of the future net primary
productivity of the oceans [56,57]. Also, there is no clear distinction of
climate induced signals on primary production and that of those
resulting from natural variability as have been explained earlier
[58-65].

Nitrogen circulation in the ocean’s OMZ
Nitrogen plays a major role in the biogeochemistry of the marine

environment with considerable influence on the cycling of other
elements, particularly carbon and sulfur. However, the fluxes of
nitrogen in the ocean is affected by the balance between ambient
oxygen concentration which is determined by the O2 supply and
remineralization of sinking Particulate Organic Carbon (POC) [66,67].
In oxygen sufficient regions of the ocean, nitrification, a biologically
enhanced process converts NH4

+ to NO2
- and NO3

-, whereas in anoxic
ocean regions, nitrate, is generally known to be reduced in a stepwise
manner to N2O or N2 (2NO3

- → 2NO2
- → 2NO → N2O → N2) for the

respiratory oxidation of organic matter [68-70]. Though, emphasized
to be a hostile environment for almost all marine life, and cover about
only about 7% of the oceans, global estimates show that the oceans
Oxygen Minimum Zones (OMZs), promote about 25%-50% of the
removal through anaerobic microbial activities especially anammox
denitrification, of oceanic fixed nitrogen. Thus, OMZs are known to
be the focal zones of oceanic nitrogen loss through denitrification and
may cause lower nitrate concentrations in upwelled water [71-75].
Studies of the past geological records of sediments provides evidence
of the important roles OMZ and coastal-offshore OMZ-water mass
exchange play on the overall N budget. The role OMZs play in the
nitrogen circulation especially its loss through heterotrophic and
anammox denitrification has been evinced through several in-situ
experiments. The diversified decadal measurement of the rate of
nitrogen loss in the OMZ of oceans, employing methods, such as
direct quantification of nitrogen gas, its ratios with Argon (N2:Ar),
stoichiometric approaches and electron transport activity assays etc
[76,77]. for areas such as those of the ETSP, ETNP and the Arabian
sea are employed. However, none of these methods has been able to
distinguish N2 production resulting from anammox denitrification and
that of heterotrophic denitrification. Also the rate and regulatory

pattern involved in the production and release of N2 by each of these
processes yet to be established [78-84].

Anammox denitrification is also known as bacterial oxidation of
ammonium with nitrite under anoxic conditions (anammox) to
produce N2 (NH4

+ + NO2
-→N2+ 2H2O). During N-cycling processes,

the substrates required for anammox denitrification, NH4
+ and NO2

-

can be obtained from reduction of NO2 through heterotrophic
denitrification processes and other possible sources such as
nitrification (nitrate reduction to nitrite or the oxidation of NH3) and
the oxidation of organic matter through Dissimilatory Nitrate
Reduction to Ammonium (DNRA), (NO3

-/NO2
- to NH4

+) and possibly
excretion by zooplankton though remains to be established.
Observations from the Peruvian and the Arabian Sea OMZs shows
that NO3

- reduction significantly correlated with depth-integrated
NO2

- concentrations which suggests that that NO3
- reduction is a

major contributor to the secondary NO2
-. Similarly, an annual

estimation of about 51% and 65% of NO2
- oxidation from coastal and

offshore OMZ, respectively, of NO3
- reduction of the ETSP was

discovered. This observed occurrences, in the OMZs, suggests active
N-loss in the ocean [85-92].

With the DNRA pathway, the anammox bacteria through multi
haemnitrite reductase convert nitrates into nitrites and eventually to
ammonium which is then combined with nitrite to form nitrogen gas.
In early studies of the relative contributions of these process to marine
nitrogen losses estimated through sealed sediments/water amended
with 15N-labelled nitrogen species, DNRA was assumed to be
insignificant compared with heterotrophic and anammox
denitrification as anammox bacteria can also produce 15N15N from
15N nitrate, even in the absence of dissimilatory nitrate reducers
[93,94]. The combined reactions of these reactants with anammox
could be derived from the recovery of the label in the produced N2 and
may result in the production of a double 15N labeled N2 (15N15N),
which in recent studies is tagged to complicating the analysis of the
data during isotope-pairing experiments. However, identified in the
anoxic Peruvian shelf and upper slope sediments that, DNRA
contributed up to 80% to the total benthic NH4

+ release as the major
proportion of the total NO3

- + NO2
- uptake was routed into DNRA

[95-98]. Likewise, DNRA at the shallowest station of the Peruvian
contributed up about 63% (12.4 mmol m-2 d-1) to the total NH4

+ flux.
In OMZ off the coasts of Peru and Namibia, DNRA has been found to
occur in regions where denitrification was not detectable but low rates
of DNRA was detected, but also undetected in ETSP. However, the
potential of DNRA to occur in open waters is still insufficiently
explored and the distinction between the supply of NH4

+ and NO2
-

from DNRA and the other mentioned sources have not been
extensively explored [99,100].

Aside the contributions of DNRA, nitrification etc. processes to the
thrive of anammox denitrification in oceans OMZ, ex-situ sulfide
incubation experiments within the Chilean OMZs suggest that cryptic
sulfur cycling contributes about 30% of the of carbon mineralization
and the subsequent release of NH4

+ for anammox. There has also been
a recent discovery of as a potential niche for NO2

− dependent n-damo,
a methanotrophic and sulfate-dependent bacteria responsible for
anaerobic oxidation of methane whose pathway reduces NO2

- to Nitric
Oxide (NO), which is then putatively dismutated into N2. These
imaging scenarios coupled with the predicted future expansions and
intensification of the oceans OMZs, suggest that the future global
losses of nitrogen may increase [101]. However, a confirmation of the
potential for the activities of the n-damo in the pelagic OMZ and the
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inclusion of these nitrogen loss contributing factors/activities in
assessment of global nitrogen budgets is still lacking. Also, despite the
significant effects nitrogen losses imprints in seawater nutrient,
especially ratios of nitrogen to phosphorus and reduces the availability
of nitrates for primary producers such as phytoplankton. However,
these studies are still speculative, as biogeochemical models do not
reproduce present-day global patterns of N [102,103]. Also, with the
existence of OMZ in the oceans and its predicted vertical expansions
in the near future in response to global warming we suggest the
possibility of a growing and thriving mass of the denitrifying
anammox bacteria, therefore we recommend further studies in other to
determine the relative global distribution of this bacteria which is
seldom studied [104-110].

Sulfur circulations in the ocean’s OMZ
Regions of the oceans that are characterized by extreme hypoxia or

worse cases of anoxia such as the OMZ of the ocean, facilitates the
degradation of organic carbon leading to the production of Hydrogen
Sulfide (H2S), from the heterotrophic mineralization of organic matter
by giant Sulfate (SO4

2-) reducing bacteria. Under well balanced
circumstances, such as a steady state where the diffusive fluxes of
nitrate and sulfide are in a 1:2.5 ratio with sufficient concentrations
O2, sulfide-oxidizing and nitrate-reducing these bacteria are capable of
detoxifying sulfide into sulfur, preventing its release into the water
column and reducing the frequent occurrence of sulfidic events [111].
On the other hand, in the oceans oxygen minimum zones, observed
sulfide, a product of reduced sulfate often originates from sediments
of nitrate and nitrite depleted waters that act as terminal electron

2S) to a
Sulfate (SO4

2-) via elemental sulfur as a reactive intermediate [112].
Under these nitrate and oxygen deficient conditions, the accumulated
concentration of sulfide reaches higher concentrations as it diffuses
into the pelagic water column. In time series station in the Baltic Sea,
a possible occurrence of frequent sulfidic plumes events which is
likely to also occur in other eutrophication and OMZs hot zones such
as the Atlantic and Pacific oceans. The massive Beggiatoa and
Thioploca microbial communities harbored by the OMZ of the ocean
e.g. OMZ sediments of the Arabian Sea, the Benguela current
ecosystem off Namibia and that of the Basaltic sea etc. significantly
reduce the sulfide flux from the sediments to the overlying water
column. The quantified release of this toxic substance (H2S) especially
from the underlying sediments into the water column can lead to the
occasional build-up of high concentrations of H2S in bottom water e.g.
diatomaceous sediments of Benguela current upwelling system and the
SO4

2- reduction by pelagic microorganisms within the water column
enhances its buildup in oceanic waters e.g. Black sea, promoting the
loss in marine life and deterioration of the marine ecosystem at large
[113]. Also under overextended conditions of declined bottom water
Oxygen (O2), NO3

- and NO2
-, microbial sulfide production can

overcome the sulfide oxidation capacity of the sulfur bacteria and lead
to marine sulfide poisoning of life. In an attempt to determine the
nitrate and nitrite concentration in the Peruvian OMZ discovered that,
sediments had a high potential for sulfide release and began to release
sulfide as soon as NO3

- and NO2
- become depleted. Furthermore the

results from pore water geochemical and non-steady state model
techniques employed by to determine how sediments with nitrate-
storing bacterial communities respond to NO3

- and NO2
- depletion,

predicted an almost immediate increase in sulfide fluxes when NO3
-

and NO2
- where exhausted [114-118].

The metabolism of sulphur is considered primitive and genes
related to its oxidation and reduction are dispersed throughout the
bacterial and archaeal domains. Sulfur-oxidizing bacteria may be
linked to that of the dissimilatory metabolism of oxidized nitrogen
species as genomic analysis of the lineage SUP05, a free-living
gammaproteobacteria relative of clam endosymbionts from the a
North Pacific seasonal OMZ, revealed enzymes necessary for the
chemolithotrophic oxidation of reduced sulfur, as well as those for
nitrate reduction to nitrous oxide (N2O). Furthermore, the discovery of
the bacteria, Epsilonproteo in the deep sea are thought of as being
involved in the cycling of marine sulfur [119]. Advanced studies done,
has shown that the bacteria Gamma may also be involved in the
oxidizing of sulfur in the hypoxic marine water columns and both
bacteria have an overlapping but slightly different distribution,
potentially related to different redox potentials. Gammaproteobacteria
were identified in the free nitrate-rich OMZ waters off the Chilean
coast suggesting its involvement in the cycling of sulfur. Likewise, in
sulfide-free but nitrate-rich regions of the Saanich Inlet, sulfide-
oxidizing and nitrate-reducing genes were found. Past studies have
shown that the sulfur producing species have been reduced as they are
predated and oxidized by heterotrophic, chemolithoautotrophic
bacteria, reducing their threat to releasing hydrogen sulfide. However,
a series of shipboard incubation experiments from current studies of
waters obtained from OMZs demonstrates active sulfate reduction and
sulfide oxidation. OMZ waters promotes pronounced sulfate reduction
and likely responsible for substantial NH4

+ production. However,
concise evidence connecting sulfate reduction and NH4

+ production is
still insufficiently explored [120].

Also oxygen, nitrate, nitrite, nitric oxide, and nitrous oxide utilizing
and distinct chemolithoautotrophs, γ-, δ- and ε-proteobacterial taxa
involved in the oxidation or reduction of sulfate in what they
expressed as the largest plume ever recorded in oceanic waters, that
occurred at the OMZ off Peru. This could be a consequence of the
climate change accelerating temperatures and ocean stratification and
subsequently facilitating the (H2S) production rate, however direct
field observations are lacking. Likewise, the activities of the
Thioglobus perditus together with free-living SUPO5 bacteria in the
Peru upwelling and their dispersal facilitated by mesoscale eddy-
driven cross-shelf, was identified. However, the cell abundances,
distribution, metabolic activities/capabilities of this free-living SUPO5
bacteria in the global ocean is still insufficiently explored [121].

The sulfur cycle has been proposed as a partial solution to the
biogeochemical problem of closing marine fixed-nitrogen budgets in
OMZs. However, the recent discovery of the cryptic sulfur cycling
which refers to the simultaneous activity of sulfate-reducing and
sulfide-oxidizing pathways in a closely defined space such as a marine
particle aggregate, has been attributed to be contributing to the loss of
fixed N from productive upwelling regions, the production of climate-
relevant N2O and dark carbon fixation in the sub-euphotic water
column. These reductions of the sulfate is said to only be active in the
presence of thermodynamically fully utilized electron acceptors such
as nitrate and nitrite, but some challenged this idea in their recent
experiments suggesting that an active, but cryptic sulfur cycle is
present in non-sulfidic subsurface waters in the eastern tropical South
Pacific OMZ off northern Chile and concluded from outcome of their
calculations, that sulfate reduction is still a thermodynamically
favorable process in these OMZ waters. However, more studies on this
should be done to rule out these speculations. Also, speculations of
other OMZs of the global oceans, to be reservoirs of actively coupled
sulfur and nitrogen cycles most especially the cryptic sulfur cycle
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must be addressed for accurate global assessment of the balance of
this nutrient in the ocean.

Phosphorus circulation in the ocean’s OMZ
Phosphogenesis is responsible for the removal of terrestrial

phosphorus in the form of phosphate by intense weathering of
sedimentary basins accumulated with phosphorous. Phosphate is one
of the biogeochemical limiting nutrients whose existing percentage
determines how much carbon is incorporated into the living biomass
and how much is consumed during the growth of phytoplankton in the
aquatic environment.

In the marine environment, phosphorus rapidly undergoes recycling
in the water column but some organic components of it, stretches to
the sediments especially under hypoxic conditions such as OMZ, as
particulate organic matter such as phytodetritus, including those
absorbed by iron oxyhydroxides and are later degraded at a certain
depth, releasing HPO4

2, limiting their sedimentary deposition. The
sedimentary phases of Phosphorus (P) include but not limited to
exchangeable P, Ferric Fe associated P, authigenic, biogenic and
CaCO3

- bound P, detrital P and organic P [122].

Under extended burial conditions, the labile P converted to HPO42-
and released from the sediments undergoes diffusions or precipitation
as authigenic calcium phosphate minerals such as Ca5(PO4)3-
x(CO3)x(OH,F). These chemical forms of P in deposited sediments are
a reflection of the redox and can be used to reconstruct the
depositional conditions from sedimentary records. However, the burial
efficiency of P is altered by the concentration of benthic oxygen, as it
influences the reduction of the iron oxyhydroxides in reducing surface
sediments, which decreases the capacity of the sediment to retain
upward diffusing dissolved phosphate. It also alters the release of P
from organic matter enhanced relative to carbon under reducing
conditions.

Phosphates can be deposited as sedimentary rocks, formed from a
series of biological actions coupled with mineral precipitations.
Oceanic anoxic events play a major responsibility in the substantial
deposition of phosphorite from the geological past, usually from
preferentially regenerated from P-bearing organic matter as compared
to carbon, such as black shale. Much of the regeneration takes place in
the water column but in sediments of relatively shallow water bodies.

The decline in oceanic oxygen has a marked effect on the cycling of
phosphorus as under hypoxic conditions, phosphate (TPO4) is
dissolved and released into the pore fluids and subsequently into the
overlying bottom water. Iron oxyhydroxides absorb this released
phosphate and reduce them through microbial induced dissolution and
the associated liberation of metal-oxide-bound phosphate, into
absorbable states (soluble states), all enhanced under oxygen-deficient
conditions. Hydrogen sulfide may then further enhance the phosphate
released from the oxyhydroxides through reductive dissolution.
Studies on the mechanisms of phosphorus cycling especially in the
hypoxic region of the ocean are still insufficient, therefore, more
laboratory, field, predictive future phosphorus flux models and
assessment of the distribution of phosphorus using eg. remote sensing
etc. shloud be done to build a comprehensive understanding of this
component of our environment. Phosphogenesis is likely driven by
large sulfur bacteria from the filamentous, highly motile genera
Beggiatoa, Thioploca and non-motile Thiomargarita because of their
marked frequent and large existence as fossils in phosphorite rocks in
active regions of modern phosphorite formations. Likewise, the

occurrence of phosphorus is also linked to the result of oversaturation
in the pore water with respect to apatite induced by the activity of
microorganisms such as large sulfur bacteria, Thiomargarita, and the
phylogenetically and metabolically closely related genus Beggiatoa,
that results in its precipitation.

Dating back to 1986, the release of phosphorus upon the addition of
sulfide which acted as a stimulant. In additions, they found out from
their quest to ascertain whether “acetate or sulfide is responsible for
the release of phosphate by a marine Beggiatoa strain through the
decomposition of polyphosphates” that, phosphorite is formed
preferentially in sediments with high sulfate reduction rates. Despite
the discovery of the different sources and formation processes of
phosphorite, a clear distinction of biologically available phosphorus
and that of dissolved organic phosphorus from lateral fluxes and their
significant potential transformation mechanisms, is still under
discovered in hypoxic waters of the global ocean.

Regions of local upwelling, where sulfate reduction rates are
exceptionally high are characterized by pronounced phosphogenesis as
they are formed in shelf sediments that are located at the border of
oxygen-depleted water masses. In occasions where bottom waters are
oxygenated and nitrified, polyphosphate commonly referred to as
poly-P and nitrates accumulated and stored in vacuoles Thiomargarita
namibiensis, are speculated to be taken up during short periods.
Consequently, when oxygen concentration drops to zero (anoxic),
energy from the hydrolysis of the polyphosphate is gained by the
Thiomargarita namibiensis. Anoxic bottom-water conditions coupled
with regions where sedimentary iron cycling plays a major role in
organic matter mineralization and also promotes the benthic
regeneration and reflux of inorganic phosphate to the water column.
Active phosphogenesis is mainly found beneath the nutrient-rich
upwelling areas off the coasts of Peru, Chile and Namibia, in modern
oceans, representing the major hotspots. However, during studies of
microbial marine phosphorus cycle, the direct measurement of
microbial phosphorus is difficult to achieve as for example, DNA
sequences need to be measured directly or removed or its influence
terminated during the DNA sequence analyses of diagnostic P-cycle
but this practices is lacking. Also, the global assessment of the gains
and the losses of phosphorus together with their distinctive loss
pathways are still rarely if there is any, explored in the marine oxygen-
starved regions.

Climate-induced ocean oxygen declines and the predicted future
further declines threaten the balanced distribution of the ocean
biodiversity as it controls and alters the cycling patterns of basic
biologically limiting nutrients such as sulfur, phosphorus, and
nitrogen. The sensitivity of N loss processes in response to minimal
changes in O2 potential for additional processes, such as preferential
of sulfide and phosphate released directly in the water column drives
the oceanic nutrient balance. The excess or limited production of these
nutrients has a marked effect on the survival of the inhabitants of the
marine environment and OMZ plays a major role in this.

However, global estimations of how much and at what rate sulfide
is generated in the water column during a sulfidic event are not well
resolved. Further investigation should be made to determine the
distribution of these nutrient cycle altering organisms with depth and
their specific niches. Also, the discovered combined effect of the
eddy-driven cross-shelf transport and of T. perditus to denitrify and
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thrive on elemental sulfur in the absence of dissolved sulfide should
be further investigated. Much attention should also be given to the
uprising cryptic sulfur cycle, to ascertain if there are any associations
with the cycling of the other limiting nutrients such as carbon,
phosphorus, etc. since it is linked with nitrogen cycling that in turn,
has the influence of other biochemical cycles. Furthermore, global
assessment of the gains and the losses of phosphorus together with
their distinctive loss pathways are still rarely if there is any, explored
in the marine oxygen-starved regions (OMZ).
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