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Abstract

The information related to the shape and size of a tumour can be exploited from the morphometric 
feature analysis of medical images. The ability of extracting such features from a wide range of imaging modalities 
enables various clinical applications in radiation oncology. The morphometric features such as volume, surface 
area, and Surface to Volume Ratio (SVR), sphericity, asphercity, Spherical Disproportion (SD), compactness one 
and two were useful in detecting and distinguishing benign and malignant lesions, classifying histological subtypes 
of carcinomas, predicting prognosis and assessing response after therapy. The morphometric features have 
emerged as promising biomarkers with discriminative and predictive capabilities and their appropriate usage will 
allow for the development of clinically implementable radiomics models in radiation oncology.
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Introduction
Cancer which is a global issue associated with high incidence and 

high mortality needs effective measures to reduce morbidity and 
mortality [1]. Yet, the challenge remains in the accurate detection, 
characterization, treatment and monitoring of cancer makes it difficult 
to achieve this. However, the radiomics, high-throughput extraction 
and analysis of large amounts of image features from radiological 
images have emerged as a promising method that allows for the 
accurate diagnosis as well proper management strategies [2]. The 
radiomics features captured from morphometric analysis are important 
to understand the geometric aspects of a particular tumor Region of 
Interest (ROI). The appearance of cancer or malignant cells differs 
from the normal cells due to the abnormality in their size, shape and 
other features and the increasing abnormalities in morphometry 
suggest the likelihood of increasing invasiveness [3-5]. Therefore, the 
morphometric assessment plays a crucial role in cancer detection and 
management. However, identifying the usefulness, robustness and 
challenging areas with respect to morphometric features is essential to 
employ such features in the clinical practice. Therefore, the following 
review is aimed at providing an overview of the morphometric 
features with significant findings and challenges encountered in 
utilization of morphometric features.

Literature Review

Outcomes of morphometric feature analysis
The significant findings related to the individual morphometric 

features (i.e., volume, surface area, SV, sphericity, asphercity, SD, 
compactness, maximum 3D diameter, flatness, axis lengths, solidity/
volume density based on convex hull, area density based on minimum

volume enclosing ellipsoid and Moran’s I) are described herein.

Tumor volume is the most commonly evaluated morphometric 
feature since it is considered to be an important predictor in 
determining the clinical outcomes [6,7]. The volume was among the 
optimal parameters for differentiating Breast Carcinoma (BC) and 
breast lymphoma [8]. Nevertheless, it was not a top contributing 
feature for classifying histological subtypes of NSCLC [9]. Aerts 
revealed that the volume had a good prognostic performance for 
patients with NSCLC and Head and Neck Carcinoma (HNC) but 
combining the radiomics signature with volume had even better 
prognostic performance than the use of volume alone [10]. According 
to Carvalho volume of the Lymph Nodes (LNs) was an independent 
prognostic factor for NSCLC but not the volume of primary tumour 
[11]. However, volume was not a predictive feature of pathologic 
Complete Response (pCR) for NSCLC after neoadjuvant Chemo 
Radiotherapy (nCRT) [12]. Ulrich also revealed that a favorable 
prognosis was associated with small tumour volume of patients with 
Head and Neck Squamous Cell Carcinoma (HNSCC) after chemo 
radiotherapy (CRT) [13]. According to Yang volume failed to predict 
pCR for esophageal Squamous Cell Carcinoma (OSCC) after nCRT 
[14]. In addition, Gabryś showed volume as a useful predictor of long-
term Xerostomia in HNC patients treated with radiotherapy while 
normal tissue complication models based on mean radiation dose failed 
to predict Xerostomia [15].

Surface area exhibited the highest difference between Grade II and 
Grade III gliomas in terms of mean rank values [16]. Further, the 
surface area obtained from margin ROI ranked 3rd among the highest 
ranking five features for distinguishing recurrent and non-recurrent 
patients with Prostate Carcinoma (PC) after radiotherapy [17]. As 
shown by Chad dad it was among five radiomics features that 
moderately correlated with survival time of large cell carcinoma. 
Moreover, it was significant in all four groups (i.e., large cell 
carcinoma, primary tumor size (T2), none LN metastasis (N0), and
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TNM stage I) associated with NSCLC survival [18]. Fang selected 
surface area to construct the radiomics signature which showed the 
ability for predicting treatment response in patients with locally 
advanced cervical carcinoma prior to concurrent CRT [19].

Yang suggested that the SVR may provide more information about 
pCR than tumour volume. Moreover, they revealed that a lower SVR 
to be indicative of a more compact shape [14]. In addition, lower SVR 
was shown to be an independent factor differentiating Invasive 
Adenocarcinomas (IAs) from Minimally Invasive Adenocarcinomas 
(MIAs) and Adenocarcinomas In Situ (AISs) that appear as pure 
ground-glass nodules (pGGNs) [20]. As shown by Park it was chosen 
to build the radiomics score that showed significant association with 
Disease-Free Survival (DFS) in patients with invasive BC. Moreover, 
they stated that the degree of irregularity of the tumour boundary was 
quantified by SVR and thus the irregular tumour boundary was likely 
to be associated with poor survival [21]. In addition, SVR was a 
dominant feature in predicting LN metastasis in patients with PC after 
prostate-specific membrane antigen radio-guided surgery [22].

Sphericity was the most important feature across multiple models 
for discriminating Glioblastoma (GBM) and Brain Metastasis (BM)
[23,24]. Further, it was revealed that the sphericity value of GBM is 
lower than that of BM [24]. Also, it was beneficial in discriminating 
PC labeled with different Gleason scores [25]. This feature exhibited 
its usefulness as an independent parameter in distinguishing IAs and 
MIAs as well [26]. Likewise, radiomics signature constructed by Jiang 
uniting sphericity with other non-morphometric features showed good 
discriminative performance in differentiating IAs from MIA in 
pGGNs with pleural contact [27]. Sphericity was selected to build the 
radiomics signature which demonstrated significant differentiation 
between seminomas and non-seminomas according to Zhang [28].

Coroller identified a rounder tumour which was quantified by 
sphericity as a feature predicting Gross Residual Disease (GRD) and 
directly proportional to the probability of GRD in patients with 
NSCLC after nCRT and before surgical resection [12]. Song suggested 
that the sphericity may reflect histological peripheral distribution of 
micro papillary patterns within lung adenocarcinomas [29]. Du 
identified sphericity as the most important risk factor for predicting 
disease progression in patients with nasopharyngeal carcinoma. They 
showed that the risk of 3-year disease progression after radiotherapy is 
increased with decreasing sphericity [30]. Also, it was one of the two 
most significant predictors of lymphovascular invasion in OSCC [31]. 
Morin concluded that sphericity had the potential to predict tumour 
grade, local failure and Overall Survival (OS) in meningioma patients. 
Low sphericity was linked to increased local failure and worse OS 
according to them [32].

Asphercity provided better prognostic values for progression free 
survival and OS in NSCLS patients compared to standardized uptake 
value, metabolic tumour volume, total lesion glycolysis and solidity 
[33]. Also, it was associated with poor survival despite palliative 
systemic treatment in patients with metastatic colorectal carcinoma 
[34]. Furthermore, asphercity showed the potential to be an 
independent predictor of prognosis in patients with invasive ductal BC 
[35].

High SD was significantly associated with high grade meningiomas 
which exhibited non-spherical shape compared to low grade 
meningiomas [36]. Chu revealed that the pancreas in pancreatic ductal 
carcinoma indicated less SD than normal pancreas [37]. SD of the 
primary tumour site was associated with pCR and GRD in NSCLC

patients. Moreover, this feature reflected that the rounder-shaped
tumours were less likely to respond well to nCRT [38]. Bogowicz
showed that larger SD linked to worse prognosis in patients with
HNC. Furthermore, this larger SD indicated larger LN spread and
suggested that the SD should be interpreted as a spread of disease than
as complexity of LN shape [39]. Ulrich also showed that a favorable
prognosis was associated with lower SD in patients with HNC [13].
Moreover, this feature ranked as the feature with the highest
importance for predicting OS as well as DFS in patients with GBM
[40].

Discussion
Compactness 1 was a significant predictor of pCR in patients with

Locally Advanced Rectal Carcinomas (LARC) and poor tumour
compactness demonstrated close association with lymph vascular
space invasion [41,42]. Also, this was a potential predictive feature for
assessing the risk in OS of patients with HNC [43]. In addition, this
feature was selected to construct the radiomics signature which
exhibited significant prognostic power for patients with
Oropharyngeal squamous cell carcinoma [44]. Fave revealed that the
prognostic potential of the NSCLC patients was improved by selecting
Compactness 2 as a pretreatment feature for OS time and time to
distance metastasis models. Furthermore, their study reflected that the
larger compactness 2 was associated with a higher predicted risk of
experiencing the outcome [45]. Compactness 1 and compactness 2
were useful features to differentiate heart from other normal tissues
and tumour volumes in patients with Hodgkin disease and Erwin
sarcoma [46].

Aerts identified compactness along with four non-morphometric
features to achieve significant prognostic performance in lung and
HNC patients but it was not among the most dominant features [10].
However, it was among the top five discriminative features between
tumour progression and pseudo progression in patents with GBM [47].
In addition, compactness was selected as a top contributing feature
from morphometric features for the classification of NSCLC subtypes
[9]. Besides, compactness was associated with OS of gastro-
esophageal junction adenocarcinoma treated with nCRT and high
compactness was suggestive of low risk while low compactness was
suggestive of high risk [48]. Discrete compactness demonstrated
higher predictive performance in discriminating encapsulated
Thymoma from invasive Thymoma according to Lee [49] but
Yamazaki showed that it did not differentiate high risk and low risk
Thymoma [50]. Nevertheless, it was identified as a useful parameter
for differentiating subtypes of gliomas [51].

Larger maximum 3D diameter was an independent differentiator of
lung adenocarcinoma [20]. In meningiomas, it was higher in brain
invasion group compared to non-invasion group [52]. Yet, it was not a
statistically significant feature for distinguishing histological subtypes
of renal carcinomas [53]. As shown by Zhuang maximum 3D diameter
was a contributing feature of CT-based radiomics score that
differentiated pCR and non-pCR patients with LARC after
neoadjuvant treatment compared to clinical variables [54].

Flatness was a contributing feature of the biomarker exhibiting
strong and significant performance for discrimination of benign and
malignant lung lesions [55]. Similarly, Palumbo found flatness to be
significantly differentiating lung nodules and higher values were
indicative of malignancy. However, this was applicable for PET-based
features whereas CT-based features did not exhibit such significant
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differentiation [56]. Besides, a favorable discrimination was exhibited 
between lymphosvascular space invasion and non-lymphovascular 
space invasion in cervical carcinoma by using the radiomics 
nomogram in which flatness was the selected morphometric feature 
[57]. It was identified as a potential biomarker for predicting tumour 
response after radiotherapy in NSCLC patients as well [58].

The major axis length was identified as an independent prognostic 
factor for patients with nasopharyngeal carcinoma and its prediction of 
OS was better than N stage according to Zhai [59]. Except for another 
non-morphometric feature least axis length was recognized as the 
most important independent prognostic radiomics feature for nodal 
control in HNSCC. Furthermore, a larger least axis length of LN was 
likely to indicate a round-shaped LN rather than an oval-shaped LN 
with similar volume [60]. Also, it was among the two most significant 
radiomics features to discriminate patients achieved pCR and non-
pCR in locally advanced rectal adenocarcinoma after nCRT [61].

Solidity was a useful feature for the classification of endometrial 
carcinoma patients with and without LN metastasis [62]. Also, it was a 
useful predictor for OS of patients with stage III NSCLC by Fried. 
They presented that the lower solidity was an indication for more 
dispersion of the tumour [63]. Higher area density based on the 
minimum volume enclosing ellipsoid was found to be associated with 
worse OS in patients with Renal Cell Carcinoma (RCC) [64]. Moran’s 
I was an independent prognostic factor for predicting progression free 
survival and OS in patients with invasive squamous cell carcinoma of 
vulva [65].

Promises and challenges
The morphometric features were insensitive to normalization as 

well as to pixel space resampling or interpolation [66,67]. Also, they 
were less affected by the noise which is favorable for their utilization 
in radiation oncology [68]. Apart from the usefulness of morphometric 
features to perform a given task such as discriminating benign and 
malignant lesions or classifying histological subtypes or predicting 
prognosis or assessing response to therapy, the robustness and 
repeatability of these features are important for achieving the optimum 
benefit in clinical applications. Even though morphometric features 
had exhibited highest repeatability and robustness [67,69] there are 
factors affecting their repeatability and robustness. For example, the 
image sequence or image contrast may impact the robustness and 
repeatability of a morphometric feature for a particular study [66,70]. 
In addition to the type of image [71,72], image acquisition parameters 
[73] and software platform [74] could also affect the reliability of
these features. Moreover, the robustness of extracted morphometric
features may vary depending on the method of segmentation [75,76].
Lack of standardization and harmonization methods is also a problem
in obtaining reliable results [77]. Therefore, it is necessary to take the
above factors into consideration when incorporating morphometric
features into a radiomics model which would be clinically
implementable and acceptable.

Conclusion
The morphometric features have emerged as promising biomarkers 

with discriminative and predictive capabilities and their exploitation 
with careful consideration would enhance the clinical benefit in 
radiation oncology. It was confirmed that the radiomics models with 
significant findings and challenges encountered in utilization of 
morphometric features. In the early detection and treatment of cancer,

the morphometric evaluation is essential. To apply such features in
practice while treating the patients, it is necessary to understand the
usefulness, robustness, and problematic areas with respect to
morphometric features.
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