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and not necessarily the beta-amyloid itself, may be the major culprit of 
the disease [7].

Three main genes associated with early onset AD are APP, PSEN1, 
and PSEN2 [8]. One main gene associated with late onset AD is APOE 
[8]. In 2009, evidence that attempted to prove ADAM10 as a candidate 
AD susceptibility gene was first provided [9]. Between 2009 and 2010, 
the genes PICALM, CL-U, CR1, and BIN1 were also put forward as 
potential AD candidate genes [10,11]. Other AD-related genes of 
interest such as CD33 and ATXN1 have also been identified [12-14]. 

Introduction of DNA microarray and its application on AD 
genes

With little known about the cause of AD, it is necessary to identify 
more AD-related candidate genes. Prior to the year 2000, identifying 
AD candidate genes involved a large amount of time and money 
and yielded limited results. However, with the development of DNA 
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Background 
Introduction of Alzheimer’s disease and AD genes

Alzheimer’s disease (AD), the most common form of senile 
dementia, is a progressive neurodegenerative disorder characterized by 
global cognitive decline involving memory, orientation, judgment, and 
reasoning [1]. The disease itself was named after Alois Alzheimer [2], 
a Bavarian psychiatrist with expertise in neuropathology. According 
to statistics, AD is approaching epidemic proportions, with no cure or 
preventative therapy available [1]. By the year 2050, it is predicted that 
AD will affect 115.4 million people globally [3].

The AD pathogenesis is not yet well understood. In last 30 years, 
there have been many hypotheses trying to explain the cause of AD 
[1,2,4]. It is of common opinion that AD is related to amyloid plaques 
(Aβ) and neurofibrillary tangles (NFT) in the brain [1,2]. This hypothesis 
is supported by the location of the AD causative gene called the amyloid 
precursor protein (APP) on chromosome 21 [5,6]. In 2009, this theory 
was updated, suggesting that a close relative of the beta-amyloid protein, 
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microarray technology, researchers began to apply this technology in 
order to better identify potential AD genes [15].

DNA microarrays (also called gene chips) are a complex technology 
in molecular biology. A DNA microarray is typically a glass slide onto 
which DNA molecules are fixed in an orderly manner at specific 
locations called spots (or features). The DNA in a spot may either 
be genomic DNA or short stretches of oligonucleotide strands that 
correspond to a specific gene. The spots are printed onto the glass slide 
by a robot or are synthesized by the process of photolithography [16].

Researchers use DNA microarrays to measure the expression levels 
of thousands of genes simultaneously. Since DNA microarrays contain 
many spots, we can obtain many gene expression levels from a single 
experiment, compared to only being able to measure expression of one 
gene with a Northern Blot [17].

In order to analyze the DNA microarray data and identify AD 
candidate genes, researchers began designing computation methods 
(algorithms) in order to process the data. Currently, the most 
commonly used algorithms are the K-means Clustering algorithm [18], 
the Principal Component Analysis (PCA) algorithm [19], and the Ant 
Colony algorithm (ACO) [20].

Organization of gene expression levels

In this manuscript, the original DNA microarray data were 
downloaded from the GEO Dataset within NCBI [21], which includes 
22,283 genes. The data were obtained from control, incipient, moderate, 
and severe AD patients. All of these data are organized in a matrix 
format (Table 1). Table 1 consists of 22,283 rows and 9 columns, where 
the 22,283 rows correspond to the expression levels of the 22,283 genes, 
and the 9 columns represent the 9 samples (experiments). The matrix 
element in Table 1 comes from male controls, denoted by in this paper. 
The other three matrices, incipient, moderate, and severe, are denoted 
by, and, with 7, 8, and 7 columns, respectively.

Methods
The simple idea behind the amplitude deviation algorithm 
(ADA)

In order to identify AD candidate genes, we are proposing a new 
model based around the following principal: when an acrobat walks 
along a steel-wire, his/her body must have some swing; if the swing 
can be controlled by the individual then the acrobat can keep the body 
balance; otherwise, the acrobat will fall. Correspondingly, each gene can 
be seen as an acrobat and the change of expression level of each gene can 
be compared to the swing of an acrobat’s body on the tightrope. In the 
controlled stage (i.e., acrobats maintaining balance on the tightrope), 
since all genes have the ability of self-regulation, the gene expression 
levels are maintained within a certain range. However, when AD 

pathology develops in the brain, the expression levels of certain genes 
goes beyond the controlled range, analogous to the acrobats losing their 
balance. These are the genes that may be associated with AD.

Data pre-processing

The data in the four different stages are organized as the matrices 
Tctrol (22,283 * 9), Tircip 

(22,283*7), Tmoder (22,283*8), and Tsevere (22,283*7), 
respectively. Since the data of every column in each matrix is from one 
sample, the data in different columns are incomparable. In order to 
solve this problem, four data matrices are processed. In this paper, we 
process these matrices using the fact that the data in every column is 
equal to the value in the corresponding column minus that column’s 
average value. This column of differences then defines the difference 
as deviation:

1

1 1 22 283 1 22 283 9 7 8 7
m

i
S(i, j) T( i, j ) T(i, j),i ,.... , , j ...n,m , ,n ; ; ;

m =

= − = = = =∑          (1)

Where s(I,j) is defined as deviation matrix. 

In the process of obtaining data, different experimental conditions 
(such as samples, equipment, temperatures, etc.) may generate errors. 
In order to reduce the potential errors, we calculated the average 
deviations for the different samples of the same stage, and this is how 
the overall deviation is calculated. The format of is presented as follows:

( ) ( )1 n

j

D i S i, j
n

= ∑                      (2)

 i=1,2,…,22283; 

n=9,7,8,7.

Mathematical representation of the ADA

In this paper, each gene is compared to an acrobat as aforementioned. 
When an acrobat walks along a tightrope, his body must have some 
swing. Correspondingly, there must be certain changes of expression 
levels of each gene. More specifically, for each gene there must be 
differences between the controlled stage and the incipient, moderate, 
and severe stages. We use these differences to characterize the changes. 
Then the deviation amplitude is introduced (here, deviation amplitude 
can be interpreted as the difference). The format of deviation amplitude 
is presented as follow:

Aincip (i)=Dincip (i)-Dctrol(i) (3)

Amoder (i)=Dmoder(i)-Dctrol(i) (4)

Asevere (i)=Dsevere(i)-Dctrol(i) (5)

Where Dcotrl(i),Dinvip(i),Dmoeder(i),Dsevere(i), are denoted by the overall 
deviation in four stages and Aincip(i),Amoder(i),Asevere(i) represents the 
deviation amplitude in the incipient, moderate and severe stage, 
respectively.

1st col. 2nd col. … 9th col.

Gene No. AFFX -NAME GSM 21215 GSM 21217 … GSM 21232
1 BioB-5_at 8.937 9.941 … 9.386
2 BioB-M_at 9.278 10.56 … 10.37
3 BioB-3_at 7.9 9.033 … 9.299
4 BioC-5_at 10.18 11.46 … 10.91
… … … … … …

22283 222384_at 5.092 6.463 … 6.6

Note 1: In Table 1, each data (gene expression level) has been log-transformed but not normalized along the column. 
Table 1: The organization of gene expression levels.
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and (8): 

Below, deviation amplitude is defined as the forms of eqns. (6), (7) 
and (8): 

Aincip(i)=|Dincip(i)-Dctrol(i)| i=1,…22283 (6)

Amoder(i)=|Dmoder(i)-Dctrol(i)| i=1,…22283 (7)

Asevere(i)=Dsevere(i)-Dctrol(i)| i=1,…22283 (8)

 The statistical histogram of Aincip(i) is shown in Figure 1B. Here, 
Aincip(i) does not obey the normal distribution. Both Amoder(i) and 
Asevere(i) also do not satisfy normal distribution.

 In statistics, σ has a common formula as follows:

σ= D(x)=E(x-x)2=E(x2)=E(x2)-[E(x)]2 

Where E(x), D(x) is the expectation and variance of x respectively.

When the deviation amplitude is defined as eqn. (3), the value of 
E(x) is almost equal to zero. However, when the deviation amplitude is 
defined as eqn. (6), the value of E(x) is greater than zero, which leads to 
a decreased value of D(x). Correspondingly, 3σ gets smaller as well. via 

3 3 * *
t tA (t) A | ( )− > σ > σ σ represents the variance which are from eqns

.
 

(6), (7) and (8)), 3σ* is selected to be the biggest threshold of range 
that allows acrobats to keep their balance. Since At(i)(t represents the 
different stages) does not obey the normal distribution, we propose the 
following two criterions to identify AD candidate genes: 

Criterion 1:

Aincip(i)> 3σ*incip>3σ*moder>3σ*severe                                        (9)

  
Dctrl(i)<Dincip(i)<Dmoder(i)<Dsevere(i)                (10)

Criterion2:

3 3* *
incip moin d er mod er severecip ,AA ) ,A(i σ σ> >

                (11)

Dctrl(i)>Dincip(i)>Dmoder(i)>Dsevere(i)  (12)

Implementation of the ADA to identify AD candidate genes

Step 1: Use eqn. (1) to calculate deviation matrices in four different 
stages

Here, we find that Aircip(i) satisfies the normal distribution via the 
corresponding statistical histogram, shown in Figure 1A. Similarly, both 
Amoder(i) and Asevere(i) satisfy normal distribution (their corresponding 
averages are almost equal to 0, their variances are equal to 0.417 and 
0.536, respectively).

The normal distribution follows the 3σ principle, which asserts 
that 99.7% of the data falls within a range of 3σ. Any sample that does 
not follow this principle is abnormal. We use the 3σ principle as the 
criterion for characterizing how big of a range our “acrobats” can have 
while maintaining stability. That is to say, when the change of expression 
level of a gene is greater than 3σ or less than -3σ (i.e., 3t tA (t) A |− > σ , t
represents the different stages) and its overall deviation is consistently 
and significantly upregulated or downregulated, the gene is a candidate 
for AD.

The computation was performed, and 12 genes were identified as 
AD candidate genes (Table 2). Among them are 7 genes whose average 
deviations are significantly and consistently upregulated (listed in the 
right column of Table 2), and 5 genes whose average deviations are 
significantly and consistently downregulated (listed in the left column 
of Table 2).

This result is not ideal. In addition to the small number of AD 
candidate genes, the data collected was affected by noise during the 
experimental process. If we can keep the original basis of the result 
and relax the conditions appropriately, the effects should improve. 
Therefore, the specific ADA is formulated:

Below, deviation amplitude is defined as the forms of eqns. (6), (7) 

Figure 1A: The statistical histogram of
 
Aincip(i) and shows that the deviation 

amplitude
 
Aincip(i) obeys the normal distribution (the average value of  Aincip(i) is 

approximately 0 and the variance is equal to 0.3609).
Figure 1B: The statistical histogram of Aincip(i) and indicates that Aincip(i) doesn’t 
obey normal distribution. 

Affymetrix Probe 
Set Name Symbol Affymetrix Probe Set 

Name Symbol

202018_s_at LTF 206232_s_at B4GALT6
206278_at PTAFR 206552_s_at TAC1
209728_at HLA-DRB4 206624_at USP9Y
211579_at ITGB3 212702_s_at BICD2
214188_at HEXIM1 221730_at COL5A2
214623_at FBXW4P1

 
216752_at PIK3R4

Table 2: The candidate genes identified by 3σ principle.

app:ds:statistical
app:ds:statistical
app:ds:histogram
app:ds:statistical
app:ds:statistical
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Step 2: Use eqn. (2) to calculate the overall deviation of each gene 
in four stages

Step 3: Use eqns. (3), (4) and (5) to calculate three deviation 
amplitudes of each gene (incipient, moderate and severe stages).

Step 4: Use eqns. (6), (7) and (8) to calculate three deviation 
amplitudes of each gene (incipient, moderate and severe stages).

Step 5: Use eqns. (9), (10), (11) and (12) to identify AD candidate 
genes.

Results
Here, we identify 52 candidate genes. Out of these genes, 27 have 

deviation amplitudes with consistent rises (Figure 2A), and 25 genes 
have deviation amplitudes with consistent declines (Figure 2B). It is 
worth noting that the 52 genes discovered with the ADA also contain 
formerly identified AD candidate genes. Thus, the results of the second 
set of equations not only retain the original results, but also achieve the 
conditions of relaxation; therefore, the second set should be better at 
reflecting the actual number of AD-related gene expressions. Tables 3 
and 4 contain candidate genes selected by the first and second criterion.

Figure 2A: AD candidate genes with consistent rises in deviation amplitude.
 Figure 2A shows that 27 genes out of 52 AD candidate genes have deviation amplitudes with consistent rises.

Figure 2B: AD candidate genes with consistent declines in deviate amplitude and shows that 25 genes out of 52 AD candidate genes have deviation 
amplitudes with consistent declines.
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Discussion
Analysis of AD candidate genes 

The healthy human body maintains physiological homeostasis in 
countless aspects, and this balance depends on coordination among 
proteins in the human body. Proteins are subject to the regulation of 
gene expression, so the coordination among proteins depends on the 
coordination of gene expression levels. Once the coordination of gene 
expression levels is destroyed, the body will enter pathophysiological 
status, resulting in disease. Since AD is a chronic neurodegenerative 
disorder that is characterized by memory impairment, cognitive 
dysfunction, and behavioral disturbances, this paper claims that AD 
revolves around a nervous system imbalance, which is associated with 

an imbalance of gene expression levels. Therefore, these genes whose 
expression levels are out of balance are AD candidate genes. 

The ADA proposed in this paper attempts to find those genes with 
dramatic changes in gene expression levels, which then leads to an 
imbalance. It is possible that this imbalance may either be the cause or 
outcome of AD. 

After analyzing the locations and functions of the proteins encoded 
by the identified genes, the following features were discovered and 
certain new pathological factors of AD were conjectured. First, most 
of the proteins encoded by these identified genes are located in the 
membrane and the cytoplasm (the distributions of proteins are shown 
in Figure 3A).

Gene ID Abbreviation Gene ID Abbreviation Gene ID Abbreviation
202018_s_at LTF 216059_at PAX3 209728_at HLA-DRB4
208016_s_at AGTR1 216417_x_at HOXB9 210511_s_at INHBA
208432_s_at CACNA1E 216752_at PIK3R4 211579_at ITGB3
215191_at THOP1 217268_at RAB7A 214188_at HEXIM1
207218_at F9 217380_s_at XPNPEP1 214509_at HIST1H3I
207672_at RFX4 217953_at PHF3 222332_at HG-U133A
207924_x_at PAX8 219327_s_at GPRC5C 214623_at FBXW4P1
208111_at AVPR2 219864_s_at RCAN3 206278_at PTAFR
202705_at CCNB2 220317_at LRAT 215339_at NKTR

Table 3: The AD candidate genes selected by the first criterion.

Gene ID Abbreviation Gene ID Abbreviation Gene ID Abbreviation
202188_at NUP93 208427_s_at ELAVL2 206089_at NELL1
202971_s_at DYRK2 210292_s_at PCDH11Y 206232_s_at B4GALT6
203030_s_at PTPRN2 211980_at COL4A1 206552_s_at TAC1
203841_x_at MAPRE3 212702_s_at BICD2 206624_at USP9Y
203998_s_at SYT1 212743_at RCHY1 221729_at COL5A2
204726_at CDH13 213436_at CNR1 221730_at COL5A2
205278_at GAD1 213458_at FAM149B1 211496_s_at PDC
205391_x_at ANK1 213714_at CACNB2
205924_at RAB3B 220188_at JPH3

Table 4: The AD candidate genes selected by the second criterion.

Figure 3A: Distribution of proteins encoded by these identified genes and 34% of proteins are located in the membrane, 15% at the cytoplasm, 12% at the nucleus, 
7% at an extracellular region, 5% at the collagen, 3% at the cytoskeleton, 2% at the microtubule, and 22% at other areas. The results suggest that potential causative 
factors of AD pathology may be associated with the proteins located at the membranes of neurons, cytoplasms, and nuclei and extracellular regions (particularly at 
the membrane and cytoplasm).
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The functions of most proteins encoded by these identified 
genes correlate with signal transduction, metabolism, regulation 
of transcription, protein transport, immune response, and protein 
degradation (especially regarding signal transduction, metabolism, 
regulation of transcription, and transport (Figure 3B). The location and 
functions of these proteins suggests that analyzing the proteins at the 
membrane and the cytoplasm is helpful for exploring the AD pathology. 

Moreover, proteins located specifically on membranes are mainly 
involved in signal transduction and protein transport (Figure 3C), 
and the proteins located specifically at the cytoplasm mainly correlate 
with protein transport and degradation (Figure 3D). Based on these 
findings, we can infer that the factors causing AD are significantly 
associated with signal transduction, metabolism, regulation of 

transcription, and protein transport and degradation. Loss of proper 
signal transduction and signaling pathway function [22,23], loss of 
regulation of transcription, [24] and dysregulation of metabolism [25] 
have all been correlated with AD progression in previous studies. 

In regard to particular genes studied, the abnormal expression levels 
of genes (AGTR1 and PTAFR) are associated with increasing protein 
kinase C (PKC), which can promote the accumulation of amyloid Aβ, 
potentially leading to AD. The protein AGTR1 (angiotensin II receptor 
1), encoded by gene AGTR1, allows for binding of angiotensin II, 
which generates diacylglycerol, and in turn activates PKC [26] which 
markedly decreases Aβ release from cells [27]. Since the expression level 
of gene AGTR1 consistently increases with AD progression (Figure 4), 
the excessive cellular accumulation of Aβ will be promoted, which may 

Figure 3B: Distribution ratios of protein functions and shows that the percentages of proteins involved in signal transduction, metabolism, regulation of transcription, 
and protein transport, are 25%, 22%, 17%, and 17%, respectively, which are greater than the percentages of proteins associated with immune response and protein 
degradation.

Figure 3C: Percentages of functions of membrane proteins and shows that the membrane proteins associated with signal transduction, protein transport, metabolism, 
immune response, and regulation/ control of transcription are respectively 55%, 20%, 15%, 5% and 5%.
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lead to AD [7]. There is evidence to suggest that angiotensin II receptor 
blockers may be a viable option for AD treatment [28], and this may 
be because these blockers prevent PKC from decreasing amyloid Aβ 
release. 

The increase of the protein PTAFR (platelet-activating factor, 
PAF), a phospholipid signaling molecule, causes increased binding 
to its corresponding receptor (RAF-R) in the membrane surface 
which can activate phosphatidylinositol and phospholipase C [7]. In 
the phosphatidylinositol pathway, extracellular signaling molecules 
which bind G protein-coupled receptors on the cell surfaces cause 
the hydrolysis of phosphatidylinositol diphosphate into two products: 
inositol triphosphate (IP3e) and diacylglycerol (DG). DG can activate 
protein kinase c [29]. Protein kinase c markedly decreased the Aβ 
release from cells, [27] and increases the accumulation of Aβ that may 
lead to AD [7]. A recent study suggests that aberrant lipid signaling is 
correlated with AD [30]. 

Furthermore, the abnormal expression of gene CNR1 correlates 

with the absence of LTD (long-term depression), which may lead 
to the impairment of LTP (long-term potentiation) and then may 
induce AD. The protein CNR1 (Cannabinoid receptor 1), which is 
mainly distributed in the central nervous system (CNS), is involved 
in preventing neurotransmitter release. Since the protein CNR1 
is significantly downregulated in the presence of AD, (Figure 4), 
LTD is not activated [31,32]. The absence of LTD may contribute to 
abnormalities of learning and memory-related behavior [33], which are 
AD symptoms. 

Additionally, the abnormal expressions of genes (COL5A2 
(221729_at), COL5A2 (221730_at), COL4A1) are associated with a 
decrease in energy supply, which then can lead to neuronal apoptosis, 
an AD neuropathological feature [34]. All of the proteins encoded by 
genes COL5A2 (221729_at), COL5A2 (221730_at), and COL4A1 are 
involved in phosphate transport in an organism’s activities. Phosphorus 
is one of the main elements that make up the human body; it is largely 
involved in the body’s energy metabolism and it is also an important 

Figure 3D: The functions of proteins in the cytoplasm  and shows the percentages of proteins involved in protein transport and degradation, metabolism, signal 
transduction, and regulation/control of transcription are 34%, 22%, 22%, 11% and 11%, respectively. 

Figure 4: The expression levels of genes (AGTR1, PTAFR, CNR1) with the deterioration of AD. Genes AGTR1 and PTAFR are associated with signal transduction. 
With the AD progression, their expression levels are significantly upregulated. Inversely, the expression level of gene CNR1 is downregulated. 
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component of adenosine triphosphate (ATP) [35]. A recent study 
revealed that higher levels of serum phosphorus are correlated with 
increased risk for dementia [36]. More research is needed to find out 
more information about the connection between phosphorus and AD. 

Figure 5 explains that the expression of proteins encoded by 
these genes (COL5A2 (221729_at), COL5A2 (221730_at), COL4A1) 
is consistently downregulated, which may contribute to energy 
metabolism disorders and then affect a series of activities such as signal 
transduction, transcription, protein degradation and transport, which, 
as mentioned previously, are related to AD. Neuronal apoptosis, another 
AD pathological feature mentioned previously, may be the result of this 
downregulation. 

Analysis of candidate genes associated with metal ions

In the 52 identified genes, 14 genes (about one-third of the total) are 
associated with metal ions. After analyzing these metal ion genes, the 
following characteristics are observed. First, most of the genes associated 
with metal ions are related to calcium ions (Figure 6A). As shown in 
Figure 6A, 14 genes are mainly related to calcium ions. Numerous studies 
have shown there is a close relationship between calcium dyshomeostasis 

and AD [37-39]; therefore, it is necessary to study these genes associated 
with calcium ions. In fact, a recent study that added new evidence for the 
Calcium Hypothesis of Alzheimer’s and Brain Aging details how changes 
in calcium signaling can affect neurons and, in some cases, promote death 
and disease [40]. Clearly, the connection between AD and calcium has 
been an active area of research for decades; since calcium plays such a 
significant role in neuronal function, it is no surprise that dysregulation of 
calcium may promote AD. 

After analyzing the genes associated with calcium ions, we saw 
that most of the proteins encoded by these genes are distributed in 
the membrane and extracellular regions. The percentage of protein 
distributions are shown in Figure 6B. In addition, we found that 
proteins encoded by the genes associated with calcium ions are mainly 
involved in signal transduction and metabolism. The percentages of 
protein functions are shown in Figure 6C. 

We also investigated the CACNB2 and CACNA1E proteins, which 
are the β2 subunit and α1E subunit, respectively, of a voltage-dependent 
calcium channel. The protein voltage-dependent calcium channel 
(voltage-dependent calcium channels, VDCC), which is located in 

Figure 5: The expression levels of genes (COL5A2 (221729_at), COL5A2 (221730_at), COL4A1).  
Genes (COL5A2 (221729_at), COL5A2 (221730_at), COL4A1) are related to transport. With the AD progression, their expression levels are all downregulated.

Figure 6A: The proportions of genes associated with various metal ions and the percentages of genes associated with calcium ions, manganese ions, magnesium 
ions, zinc ions, and ferric ions are 53%, 17%, 12%, 12%, and 6%, respectively.
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the cell membrane, controls the intake of calcium ions into the cell. 
VDCC activity is determined by the α1 subunit whose functions are 
regulated by a β subunit (β1-β4) [41]. Since the expression level of 
gene (CACNB2) is significantly downregulated with the deterioration 
of AD (Figure 7), the ability of a β2 subunit to regulate an α1subunit 
may weaken, which may cause the expression of the gene CACNA1E 
to consistently increase with AD progression (Figure 7). The increasing 
proteins encoded by the gene cacn1e may induce VDCC activity 
changes. Moreover, VDCC activity changes may cause a change in 
calcium influx, which may lead to intracellular calcium dyshomeostasis 
and induce AD. This conclusion coincides with the idea that AD is 
correlative with the intracellular calcium dyshomeostasis [39].

Potential implications for the AD candidate genes

In this paper, we studied eight genes selected from a list of identified 
AD candidate genes and discussed their potential implications in AD. 
Although we believe that these AD candidate genes are interesting for 
many reasons, including the dramatic change of gene expressions and 
its proven role in AD pathogenesis by other references (Figure 8), the 
potential implication should be used only as a reference.

Conclusions
Even though AD is the most common form of dementia, its 

pathological mechanisms are not fully revealed. However, three early-
onset familial AD genes (APP, PSEN1, and PSEN2) and one genetic 
risk factor for late-onset AD (APOE) have been identified. With the 
applications of DNA microarray technology, identifying more AD 
candidate genes by computation appears particularly promising.

By using ADA, we were able to identify 52 genes that showed 
dramatic changes in gene expression, and thus can be identified as 
potential AD candidate genes. With regards to these candidate genes, 27 
genes showed average amplitudes with unanimous rises (Figure 2A) and 
25 genes showed average amplitudes that consistently downregulated 
with the deterioration of AD (Figure 2B). 

By studying these AD candidate genes, the following four 
pathogenetic roles are determined: (1) the abnormal expression levels 
of genes (AGTR1 and PTAFR) are associated with an increase in the 
activity of protein kinase c, which promotes the accumulation of Aβ, 
in turn leading to AD; (2) The abnormal expression of gene CNR1 

UnknownExtracellular regionMembrane

Figure 6B: The distributions of proteins encoded by the calcium-related genes. The percentages of proteins located at the membrane, the extracellular region, and 
unknown are, 78%, 11%, and 11%, respectively.

Figure 6C: The percentages for functions of proteins encoded by the genes associated with calcium ions. 56% are involved in signal transduction, 44% are related 
to metabolism.
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correlates with the absence of LTD, which may lead to the impairment 
of LTP, and subsequently may induce AD; (3) The abnormal expressions 
of genes (COL5A2 (221729_at), COL5A2 (221730_at), COL4A1) are 
associated with decreases in energy supply, which may lead to neuronal 
apoptosis, a pathological feature of AD; (4) The abnormal expressions 
of genes (CACNB2, CACNA1E) correlate with the intracellular calcium 
dyshomeostasis, which is related to AD. 

Based upon this study, we propose that AD pathogenesis may be 
related to abnormality of signal transduction (AGTR1 and PTAFR), 
decrease in protein transport capacity (COL5A2 (221729_at), COL5A2 
(221730_at), COL4A1), impairment of axon repair (CNR1), and 
intracellular calcium dyshomeostasis (CACNB2, CACNA1E).

Finally, since these AD candidate genes were only identified by 

computation using ADA their potential implication for AD pathology 
should be further validated by wet lab experiments.
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