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Abstract
Adult T-cell leukemia/ lymphoma (ATLL) is high resistance fatal malignancy which has a poor prognosis 

and exhibits resistance to conventional chemotherapy. The development of novel therapies for ATLL relies on a 
comprehensive understanding of the occurrences that result in cellular survival and proliferation regulating pathways 
that control growth signals is an emerging and complementary approach to ATL treatment. The PI3K/AKT/mTOR is 
a pivotal gatekeeper for cell growth, viability, migration, proliferation, and development drug resistance. Activation of 
PI3K, AKT, mTOR regulates important genes and proteins like mTOR, p53, NF-κB, P27, P21, S6K, FKHR and BAD. 
So this rout has a central role in handling cell cycle regulators, transcription factors and anti-apoptotic proteins.  This 
review focuses on the role of PI3K/AKT/mTOR in ATL progression and development drug resistance..
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Introduction
Human T lymphotropic virus type 1 (HTLV-1) is the earliest 

human retrovirus discovered from the deltaretrovirus family and is 
estimated to infect approximately 10–20 million of all people, however 
only 3-5% will eventually progress to adult T-cell leukemia/ lymphoma 
(ATLL) or tropical spastic paraparesis/HTLV-associated myelopathy 
(TSP/HAM) [1-3]. Survival of patients with ATLL is considerably low. 
The average survival of these patients is only 13 months [6-8]. So it is an 
emergency to provide effective and novel therapy for this patient. One 
of the pathways that have a central role in cell survival and proliferation 
is PI3K/Akt/mTOR pathway that has especially role in tumorigenesis 
[9-14]. There are many studies that proved the role of this pathway in 
malignancies such multiple myeloma [15-17]. This review especially 
focuses on the role of PI3K/Akt/mTOR in ATL.

HTLV-1
HTLV-1 is one of the members of the retrovirus family. Like other 

retroviruses, a proviral genome of HTLV-1 has structural genes, pol, gag 
and env, along with long terminal repeat (LTR) at both ends [18-20]. The 
diagnostic feature of the HTLV-1 proviral genome is the existence of pX 
region between env and 3’ LTR and encoded several adornment genes, 
which comprise tax, rex, p12, p21, p30, p13, and HTLV-1 bZIP factor 
[21-23]. Between these viral proteins, HBZ and TAX play significant 
roles in the cellular transformation and the activation in T-cell [24,25].

 From diverse proteins that code by HTLV-1 genome, HBZ is the 
only protein expressed in all ATL cases without mutation in other 
hands, wild-type expressed [26,27]. There are two types of HBZ in ATL, 
spliced sHBZ and unspliced HBZ, which differs in 7 amino acids [28-
30]. Both HBZ isoforms consist of three domains: activation domain 
(AD), central domain (CD), and basic leucine zipper domain (bZIP).  
HBZ encompass a functional nuclear export signal (NES) sequence 
within its N-terminal region that disrupts the cellular autophagic 
response in the cytoplasm. In addition, three nuclear signals (NLSs) 
exist that responsible for nuclear localization of HBZ protein. There is 
the sp1 region in 3’ LTR of HTLV-1 have been shown to be necessary 
for HBZ promoter activity [31-33]. 

Diver’s function of HBZ in ATL was recognized, these functions 
occurred by interaction with several proteins. HBZ suppresses the p53 
expression induced by ATF3 via binds to ATF3/p53 complexes [34,35]. 

Both BCL2 and Flip could be expressed via induction by HBZ. HBZ 
also has a role in decreased activation of P53 through binding to p300/
CBP, inhibits p53 acetylation and deregulates the p53 activity [36,37].

Several studies were showed the pleiotropic function of TAX in 
tumor genesis. CREB/ATF, SRF, and NF-kappa B-associated pathways 
are regulated by TAX, so TAX is able to modulate expression of many 
viral and cellular genes [38-40]. Tax also downregulate the function of 
various regulatory proteins via direct protein-protein interaction. Tax 
forces the infected T-cells into unstoppable replication and interfering 
with the function of telomerase and Topoisomerase-I via inhibiting 
DNA repair [41-43]. 

PI3K/Akt/mTOR Pathway
In several cancers especially hematologic cancers role of PI3K/Akt/

mTOR in tumorigenesis were highlighted [44-49]. This pathway from 
diver’s mechanisms helps to cancers to be more aggressive through 
increase proliferation and promote viability [50-52]. These functions 
earn from interacting with important cellular proteins like cell cycle 
regulators, anti-apoptotic proteins and transcriptional factors. PI3K is 
an extracellular sensor of this rout [53]. When growth factors like PDGF 
or FGF bind to its surface receptor PI3K activated and stimulate AKT 
[54,55]. AKT is an effector of this pathway, which has a diverse function. 
In terms of anti-apoptotic effect, anti-apoptotic effects of FLICE-like 
inhibitory protein (FLIP) and cIAP2 and XIAP is improved by AKT 
[56,57]. AKT also suppresses pro-apoptotic proteins like FAS, BIM and 
BAD [58,59]. Phosphorylation of BAD by AKT leads to stabilization of 
BCL-xL [60,61]. AKT activates NF-kB indirectly via phosphorylation 
of IKK. AKT also controls cell cycle through interaction with main 
cell cycle regulators like P27, P21, and P53, which can induce cell cycle 
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arrest [62-64].  AKT stimulates suppression of P53 through activation 
of murine double murine 2 (MDM2) [65,66]. AKT induces activation 
of mTOR via 3 ways, phosphorylate TSC2, inhibition PRAS40 and 
enhance the nutrition level by stabilizing GLUT1 in cell surface [67,68].

mTOR is the last component of this pathway. There are two types 
of mTOR complex that is different in ingredients and functions. The 
main mTORC1 components include mTOR, Raptor, and mLST8/GbL 
and the mTORC2 ingredients are mTOR, Rictor, and mLST8/GbL 
[69,70]. First different between mTORC1,2 is sensitivity to rapamycin 
(mTORC1 is sensitive and mTORC2 is resistance). The substrates of 
mTORC1 are p70S6K and 4E-BP1. But substrates of mTORC2 are 
protein kinase C-a (PKC-a), serum- and glucocorticoid-inducible 
kinase (SGK), and AKT [71,72]. mTORC1 as a sensor of nutrition level 
in a cell, which responsible for protein synthesis and proliferation [73-
75]. Phosphorylation of S6K (ribosomal S6 kinase) activates ribosome 
biogenesis, and phosphorylation of 4E-BP1 (eukaryotic translation 
initiation factor 4E [eIF-4E] binding protein 1) inhibits its binding 
to eIF-4E [71-77]. Promoting cap-dependent translation is occurred 
through Liberation of eIF-4E and then participate in a translation 
initiation complex. mTORC1 enhances cell cycle proteins like myc and 
cyclins [78,79]. mTORC1 has an anti-apoptotic effect by enhancing 
expression anti-apoptotic protein MCL-1. Furthermore, mTORC1 
indirectly inhibits apoptosis signal-regulating kinase 1 (ASK1) [80,81]. 

Activation of PI3K/AKT/mTORC1 in ATLL
Scientists were proved a special role of PI3K/Akt/mTORC1 in ATLL 

[82,83]. This pathway could be activated via a diver’s mechanism like 
activation of HBZ or TAX [84]. Mutation of the chemokine receptor 
CCR4 also lead to activation of PI3K and stimulate activation of PI3K/
AKT/mTORC1 pathway in addition, TAX can activate this pathway 
from two different ways 1: Through stimulating of RAS signalling. 2: 
By inhibition of PTEN (a PI3K inhibitor) [85-87]. HBZ also stimulate 
activation of downstream of mTOR through interaction with GADD34 
[88]. In HTLV-1 Loss of N-myc downstream regulated gene 2 (NDRG2), 
a negative regulator of PI3K, enhanced activation of the NF-κB pathway 
by PTEN and NIK phosphorylation for ATL [89]. 

A diverse study showed a particular role of PI3K/AKT/mTOR in 
ATLL. When they inhibit these route, the proliferation of HTLV-1 cell 
line was suppressed [90]. In HTLV-1, PI3K/Akt/mTOR activity result 
in stimulation activity of NF-kB and triggers transcriptional factor like 
activator protein 1 (AP1) and also reduces cell cycle inhibitors like P53, 
P27, P21. In addition, AKT regulates apoptotic pathway via promotes 
anti-apoptotic proteins such as BCL-xL and deregulate pro-apoptotic 
proteins like BAD and BAX (Figure 1) [91]. 

Preclinical Trial   
Because PI3K/Akt/mTOR is an important route in tumorigenesis  

and has a special role in hematologic malignancy, several studies were 
done to investigate the efficacy of PI3K/Akt/mTORC1 inhibitors in 
HTLV-1 cell lines. Very recently Hiroo Katsuya et al. [92] demonstrated 
idelalisib, an inhibitor of PI3k-δ, induce apoptosis and cell toxicity in 
ATL cells in vitro and overcome stimulation via CCL22.  Chie Ishikawa 
et al. [93] Reported NVP-BEZ235, a dual PI3K, and mTOR inhibitor 
induces cell cycle arrest and also induce apoptosis in HTLV-1 infected 
T-cell. Recently Chie Ishikawa et al. [82] showed Butein, an inhibitor 
of Akt, simultaneously induces cell apoptosis and cell cycle arrest and 
also induce caspase activation. Chie Ishikawa et al. [83] demonstrated 
Peridinin inhibits IκBα, RelA, Akt and p70 S6 kinase and induces cell 
cycle arrest and also induce apoptosis in MT-2 cell line (Table 1).

Conclusion
The PI3K/ AKT/mTOR signalling pathway is implicated in multiple 

aspects of HTLV-1 infected T-cell. The Basic studies performed on the 
PI3K/ AKT/mTOR pathway in HTLV-1 infected T-cell have shown 
that it plays an integral role in ATLL disease biology. PI3K/Akt/
mTOR signaling has been reported to promote HTLV-1 infected T-cell 
survival and thereby establishes disease progression and acquired drug 
resistance. Targeting the PI3K/AKT/mTOR pathway could, therefore, 
be an interesting new avenue to treat ATLL. It would increase apoptosis 
of HTLV-1 infected cells and as such decrease tumor growth and 
survival.
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Figure 1: Apoptotic pathway via promotes anti-apoptotic proteins.

Drug Drug target Cell line Result Reference

Idelalisib PI3k-δ patient derived 
cell line(PDC)

Reduce viability of 
ATL cells 92

NVP-BEZ235 PI3K, mTOR MT-2, MT-4, 
HUT-102

Reduce proliferation 
of infected cells 93

RAD001 mTOR MT-2, MT-4, 
HUT-102

Reduce proliferation 
of infected cells 93

Butein AKT MT-4, HUT-102, 
PDC

Induce apoptosis 
and cell cycle arrest 82

Curcumin PDK MT-2, C5/M 
SLB-1, HUT-102

Suppress activation 
of AKT 2

Table 1: PI3K/AKT/mTOR inhibitors.
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