Dersleri yüzünden oldukça stresli bir ruh haline sikiş hikayeleri bürünüp özel matematik dersinden önce rahatlayabilmek için amatör pornolar kendisini yatak odasına kapatan genç adam telefonundan porno resimleri açtığı porno filmini keyifle seyir ederek yatağını mobil porno okşar ruh dinlendirici olduğunu iddia ettikleri özel sex resim bir masaj salonunda çalışan genç masör hem sağlık hem de huzur sikiş için gelip masaj yaptıracak olan kadını gördüğünde porn nutku tutulur tüm gün boyu seksi lezbiyenleri sikiş dikizleyerek onları en savunmasız anlarında fotoğraflayan azılı erkek lavaboya geçerek fotoğraflara bakıp koca yarağını keyifle okşamaya başlar
Reach Us +443308186230

GET THE APP

Ultrafiltration of Tunisian Cactus Juice for Industrial Use | OMICS International
ISSN: 2329-8863
Advances in Crop Science and Technology
Make the best use of Scientific Research and information from our 700+ peer reviewed, Open Access Journals that operates with the help of 50,000+ Editorial Board Members and esteemed reviewers and 1000+ Scientific associations in Medical, Clinical, Pharmaceutical, Engineering, Technology and Management Fields.
Meet Inspiring Speakers and Experts at our 3000+ Global Conferenceseries Events with over 600+ Conferences, 1200+ Symposiums and 1200+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business

Ultrafiltration of Tunisian Cactus Juice for Industrial Use

Houssem Eddine Ben Messaoud* and Jamel Mejri

Higher School of Agricultural Equipment Engineers in Medjez el Bab, Tunisia

*Corresponding Author:
Houssem Eddine Ben Messaoud
Higher School of Agricultural Equipment Engineers
Medjez el Bab, Tunisia
Tel: +21652766530
E-mail: houssem.ben.messaoud@gmail.com

Received date: May 11, 2017; Accepted date: May 17, 2017; Published date: May 24, 2017

Citation: Messaoud HEB, Mejri J (2017) Ultrafiltration of Tunisian Cactus Juice for Industrial Use. Adv Crop Sci Tech 5:287. doi:10.4172/2329-8863.1000287

Copyright: © 2017 Messaoud HEB, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Visit for more related articles at Advances in Crop Science and Technology

Abstract

This paper aims to contribute to the optimization of a membrane base process for the clarification, the concentration and preservation of Cactus cladodes juice for an industrial use. The performance of the membranebased process was evaluated on the basis of the quality of products and its effect when used in water treatment. First, a study of the different parameter was conducted when processing the ultrafiltration, water activity and bioflocculant activity were measured to to validate our work Yield obtained when treating water in cactus juice ultrafiltred with a 300 kDa membrane module are between 40 and 47%, and between 90 and 96% for those treated with 0.1 µm membrane.

Keywords

Concentration; Water treatment; Membrane; Bioflocculant

Introduction

Cactus plant (Opuntiaficusindica; Opuntiaspp., Cactaceae) is associated with the semi-arid zones of the world and it grows well in areas like Africa, Australia, the Mediterranean region, Mexico. The major components of the cladodes are water (91%), carbohydrate vary from 64 to 71%, protein (8.3-13.25%) [1], lipid (2.4-7.2%) [2]. The lower water activity of the concentrated juice relative to the natural juice is a clear protection against the growth of microorganisms and can extend the self-life of the juice. In addition, package, storage and costs are remarkably reduced [3]. The basic properties of membrane operations make them ideal in the production of fruit juices with high quality, natural fresh taste and additive-free. They are generally no thermal and do not involve phase changes or chemical additives; besides, they are simple in concept and operation and characterized by low energy consumption [4].

Juice clarification, stabilization and concentration are typical steps where membrane processes as ultrafiltration has been successfully utilized [5]. The extracted juice from cladodes has shown important results in water treatment. As a bio flocculant, the juice has shown a rapid reaction when added in water. The flocculation process was accelerated, only by using whitewash with or other additives to activate the electronic charges. Many experience were held in this field, the cladodes juice, while added in water, can eliminate; Copper, Zinc and Chrome [6,7].

Nomenclature

Aw: Water Activity

Aw0: Initial water Activity

Aw1: Water Activity after treatement

Jw: flux (kg.min-1.m-2)

Qf: Permeate flow rate (L.h-1)

TMP: Transmembrane pressure (bar)

S: Membrane surface (m2)

Pa: Inlet pressure (Bar)

Pb: Outlet pressure (Bar)

Patm: Atmospheric pressure (Bar)

R: Juice yield (%)

N0: Initial absorbance

Nf: Absorbance after treatment Initial

MCF: Mass concentration factor

V0: Initial volume (ml)

Vr: Retentat volume (ml)

Materials and Methods

Juice extraction

Cactus cladodes were cultivated from 2 regions in Tunisia: The Opuntia ficus indica were collected from La Marsa (North of Tunisia), their length vary from 34 to 46 cm, from 21 to 29 cm width and its thickness varies from 2 to 4 cm. The O. ficus inermis from Rafraf (North of Tunisia) are 30 to 42 cm length, 15 to 21 cm width and 2 to 2.5 cm thickness. The cladodes were peeled manually, with a knife, and grinded. The juice was purified before the ultrafiltration step. Then it was stored at 4°C until use.

Characteristics of the ultrafiltration unit

Cactus cladode juice was clarified by using a pilot unit; model UFA/1000/S brand Pignat (France). The equipment consists of a feed tank, a feed pressure pump, two manometers located at the inlet and outlet of the membrane module. For better results and comparison of the water elimination and water activity to be optimized later, two membrane modules were used, one of 0.1 μm and the other of 300 kDa. The experiences consist on concentrating the juice using the ultrafiltration method. 3 liters of cladode juice was used for every essay. The ultrafiltration was used on moderated rotor frequency of 30 Hz, and a trans-membrane pressure not exceeding 3 bars. Experiments using a 300 kDa module were held for 8 h, a 0.7 liters were obtained from 3 L. Those with a 0.1 μm module were held for about 3 h. Other researchers like Cassano et al. held the experiment for 4 hours. The temperature of juice coming out of the feed tank was 28°C.

flux: image (1)

Permeate flow rate: image (2)

Transmembrane pressure: image (3)

With S: membrane surface (m2), Pa: Inlet pressure (Bar), Pb: outlet pressure (Bar)

Patm: atmospheric pressure (Bar)

Also the Mass concentration factor has been calculated. It is given by:

image (4)

With V0: Initial volume (ml)

Vr: Retentat volume (ml)

Bio-flocculant activity

The ultrafiltred juice was used to treat water. A spectrophotometer was used to measure the absorbance and the yield was calculated. All is conducted from the Jar Test method. First the pH of waste water was adjusted. For every 100 ml, 0.3 g of quicklime were added. The mix was agitated 2 min at high speed, than left to settle. For each experiment, we have used 30 ml and added different quantities of cactus juice. Optimized results were represented. Yield is based on the absorbance values. Initial value of absorbance is 1.7. Juice yield values are based on the absorbance which is given by the following equation.

image(5)

With: N0: Initial absorbance, Nf: Absorbance after treatment

Results and Discussion

Study of ultrafiltration process

Table 1 shows experimental results concerning the ultrafiltration process of cactus cladode juice.

Cactus Species Membrane module(kDa) Aw0 Retentate (L) Aw1 Permeate (L)
Indica 1000 0.932 1.4 0.923 1.6
300 2.28 0.924 0.72
Inermis 1000 0.920 1.43 0.917 1.57
300 2.3 0.915 0,7

Table 1: Water activity values before and after juice concentration.

Mass concentration factor

Table 2 below gives MCF of ultrafiltration. When using a 1000 kDa membrane, the juice of the indica specie was concentrated for 53.33% from 0.932 to 0.923 and for 24% when using a 300 kDa membrane module. Also, for the inermis specie, the water activity was reduced from 0.920 to 0.912 when using 1000 kDa membrane and a concentration factor of 2.09. For the 300 kDa module, the MCF is 1.3 and water activity was reduced to 0.915. The juice was pumped through the shell and the tube side of the membrane module. The rotor frequency was 30 Hz. The juice was recycled back to the tank. Its temperature at the beginning was ambient temperature, but due to the pump heat and circulation in the tube, the juice temperature reached 29 ± 2°C.

  Module (kDa) MCF
O. ficusindica 1000 2.16
300 1.13
O. inermis 1000 2.09
300 1.3

Table 2: Mass concentration factor.

The Transmembrane pressure was fixed. Inlet membrane pressure was 2.2 bar and outlet pressure was 1.1 bar image bar. The same parameters were used for both membrane modules. Figures 1 and 2 give us an idea about the volume of permeate and flux as function of time for two different membrane modules. Also Figure 3, represents the flux as function of time. In the range 0-2 hours, the decrease of the flux can be remarkable by the increase of the permeate from 0 to 0.16 l for the 300 kDa module and from 0 to 0.89 L for the 0.1 μm module for the inermis variety. The same for the indica cladode juice, in the range 0-2 hours the permeate increased from 0 to 0.18 L for the 300 kDa module and from 0 to 0.92 L for the 0.1 μm module. In the range of 2 to 5.5 hours for the 300 kDa module, the decrease of the flow rate is due to concentration of the juice, and as a result the flux had also decreased from 2,84 to 1,036 for the inermis variety and from 3,36 to 1,24 for the indica variety.

advances-crop-science-technology-Variation-permeate-volumes-function

Figure 1: Variation of permeate volumes as function of time for two different membrane modules (a) O. f. inermis et (b) O. f. indica.

advances-crop-science-technology-Evolution-permeate-flow-Membrane-module

Figure 2: Evolution of permeate flow: Membrane module (a) O. f. inermis et (b) O. f. indica.

advances-crop-science-technology-Evolution-permeate-flow

Figure 3: Evolution of permeate flow: Membrane module (a) O. f. inermis et (b) O. f. indica.

But for the 0.1 μm module, in the range of 2 to 3.5 hours, the flux had decreased from 6.95 to 3.97 for the inermis variety and from 7.18 to 4.10 for the indica variety. The concentration of the juice is not important in the first 3 hours, so the juice viscosity remained almost constant for the 300 kDa membrane module, but it is remarkable that after 3 hours, about the half of the juice water was extracted by the 0.1 μm membrane module, as a result, the viscosity has changed [4]. In the range of 4 to 9 hours for the 300 kDa module, the flux decay is more attributable to the exponential increasing of the juice viscosity. These observations confirm date reported in literature [3] concerning the concentration of passion fruit. These results can be attributed to a stronger shear stress along the condensation side of the membrane [4].

Effect of concentrated juice on synthetic water treatment

The experiments of coagulation and flocculation using cactus juice on synthetic water containing different concentrations of phosphate, different pH and volumes of juice are given in Table 3. From this Table 3 it is clean that using a 0.1 μm membrane module gave a better yield. They are over 90% which is considered a good result, about all phosphate was coagulated. But for a membrane of 300 kDa, the yields didn’t give the same results. Maximum of 47% was obtained. Mostly is it up to the concentration of juice used for water treatments and the phosphor concentration may also have affected the coagulation process. In All cases, objectives were successfully achieved and we can conclude that using cactus juice is an interesting way to water treatment.

Membrane diameter Liquid type Volume(ml) pH Phosphate concentration (mg/l) Cactus specie Yield
300kDa Retentate 2 9.5 5 Indica 47%
Inermis 44%
Permeate Indica 45%
Inermis 40%
0.1µm Retentate 4 9.5 15 Indica 94%
Inermis 96%
Permeate Indica 91%
Inermis 90%

Table 3: Optimized results of the coagulation flocculation with concentrated juice.

Conclusion

The concentration process represents a valid approach to process the juice at low temperatures, in a no thermal process for an industrial uses like water treatment. The results, after a reduction of water content are not sufficient to have an idea about the stability of the juice. The water activity was note reduced enough even after 53% concentration. The experiences must be optimized to reduce water activity. In this case other proceeds can be used after ultrafiltration like osmotic distillation. The coagulation effect is still present, but the yield and the quantity to use for water treatments should be verified. The concentration of juice with a 0.1 μm membrane module has shown better results when used for the coagulation flocculation.

References

--
Post your comment

Share This Article

Article Usage

  • Total views: 2403
  • [From(publication date):
    June-2017 - Jul 17, 2024]
  • Breakdown by view type
  • HTML page views : 1780
  • PDF downloads : 623
Top