Journal of Dementia
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
  • Review Article   
  • J Dement 8: 215., Vol 8(3)
  • DOI: 10.4172/jmis.1000226

Exploring the Evolution of Alzheimer’s disease Treatments: From Early Observations to Modern Genomic Therapy

Ali Hassan Jafari* and Mohammad Azimi
Department of Occupational Therapy, Tehran University of Social Welfare and Rehabilitation Sciences (USWR), Iran
*Corresponding Author: Ali Hassan Jafari, Department of Occupational Therapy, Tehran University of Social Welfare and Rehabilitation Sciences (USWR), Iran, Email: Ali.hassan@Jafari.ir

Received: 02-May-2024 / Manuscript No. dementia-24-138212 / Editor assigned: 06-May-2024 / PreQC No. dementia-24-138212 (PQ) / Reviewed: 20-May-2024 / QC No. dementia-24-138212 / Revised: 22-May-2024 / Manuscript No. dementia-24-138212 (R) / Published Date: 30-May-2024 DOI: 10.4172/jmis.1000226

Abstract

The historical progression of Alzheimer’s disease (AD) treatments, tracing the journey from initial observations to the latest advancements in genomics therapy. The narrative highlights the pivotal role of therapeutic drugs and gene therapy in managing AD. Through a chronological lens, it illuminates the transformative impact of genomics research on our understanding and approach to combating this complex neurological disorder. The abstract aims to provide a comprehensive overview of the evolution of AD treatments, showcasing the promising strides made in recent years towards more effective therapeutic interventions.

keywords

Alzheimer's disease; Therapeutic drugs; Gene therapy; Treatment evolution; Neurological disorder

Introduction

The introduction to a paper on Alzheimer's disease and its treatment evolution might go something like this:

Alzheimer's disease (AD) stands as one of the most challenging and prevalent neurodegenerative disorders globally, characterized by progressive cognitive decline and memory loss. First documented over a century ago, AD has since been a focal point of medical research, with significant strides made in understanding its pathophysiology and developing treatment strategies [1]. In particular, the advent of therapeutic drugs and gene therapy has heralded a new era in AD management, offering hope for improved patient outcomes and quality of life. This paper explores the evolution of AD treatments, tracing back to the initial descriptions of the disease and chronicling the significant advancements that have shaped current therapeutic approaches. Central to this narrative is the emergence of genomics therapy as a cutting-edge technique, revolutionizing how we perceive and address AD at its molecular level. By examining historical milestones alongside recent breakthroughs, we aim to provide a comprehensive overview of the journey towards more effective AD therapies, underscoring the critical role of genomics in shaping the future landscape of Alzheimer's treatment [2].

Historical insights into alzheimer's disease

Alzheimer's disease (AD) has a rich historical background, dating back to its initial description by Dr. Alois Alzheimer in 1906. Dr. Alzheimer's study of a patient named Auguste Deter laid the foundation for our understanding of this complex neurological disorder. Early observations noted the presence of abnormal protein deposits and neuronal damage in the brain, setting the stage for decades of research into AD's underlying mechanisms.

Early treatment approaches

In the early stages of AD research, treatment approaches primarily focused on symptomatic relief rather than targeting the disease's root causes. Medications such as cholinesterase inhibitors and memantine were among the first drugs approved for AD, aimed at enhancing neurotransmitter activity and managing cognitive symptoms. While these treatments offered some benefits, they were limited in addressing the progressive nature of the disease [3].

Advancements in therapeutic drugs

Recent years have witnessed significant advancements in therapeutic drugs for AD, with a growing emphasis on disease-modifying treatments [4]. Experimental drugs targeting amyloid beta plaques, tau protein tangles, and neuroinflammation have entered clinical trials, signaling a shift towards more targeted and comprehensive approaches to AD management. These novel therapies hold promise for slowing or halting disease progression, marking a crucial milestone in AD research (Table 1).

Drug Name Mechanism of Action Clinical Efficacy Common Side Effects
Donepezil Acetylcholinesterase Improved cognition, Nausea, diarrhea,
  inhibitor delayed disease insomnia
    progression  
Rivastigmine Acetylcholinesterase Symptomatic relief of Nausea, vomiting,
  inhibitor cognitive decline diarrhea, dizziness
Memantine NMDA receptor antagonist Moderate improvement
in memory and
cognition
Dizziness, headache,
constipation

Table 1: Comparison of Therapeutic Drugs for Alzheimer's Disease.

Revolutionizing treatment with gene therapy

Gene therapy has emerged as a revolutionary approach to treating AD, leveraging genetic engineering techniques to modify or replace malfunctioning genes associated with the disease [5]. By targeting specific genetic mutations or pathways implicated in AD development, gene therapy holds potential for personalized and precise interventions, offering hope for long-term therapeutic benefits and improved patient outcomes (Table 2).

Gene Mutation Protein Effect Clinical Manifestations
APP Aβ peptide overproduction Amyloid beta plaque formation Early-onset AD, cognitive decline
PSEN1 Presenilin dysfunction Aβ peptide accumulation Early-onset AD, memory loss
PSEN2 Presenilin dysfunction Aβ peptide accumulation Early-onset AD, behavioral changes
APOE ε4 allele Impaired lipid metabolism Increased risk for late-onset AD

Table 2: Key Genetic Mutations in Familial Alzheimer's Disease.

The genomics era: precision medicine in alzheimer's

The advent of genomics has ushered in a new era of precision medicine for Alzheimer's, characterized by tailored treatments based on an individual's genetic profile. Advances in genomic sequencing and biomarker identification have enabled researchers to unravel the genetic complexities of AD, paving the way for personalized therapeutic strategies that target underlying molecular mechanisms [6,7]. The integration of genomics into clinical practice heralds a paradigm shift towards more effective and personalized AD care.

Challenges and opportunities ahead

Despite remarkable progress, challenges remain in the quest to conquer Alzheimer's disease. Clinical trials face hurdles such as patient recruitment, trial design complexities, and the need for robust biomarkers to track treatment efficacy. Ethical considerations surrounding genetic testing and privacy also warrant careful navigation in the genomics era. However, these challenges also present opportunities for collaboration, innovation, and multidisciplinary approaches to accelerate progress in AD research and treatment development [8,9].

Result and Discussion

Results

The advancements in Alzheimer's disease (AD) research have yielded promising results, particularly in the development of novel therapeutic drugs and gene therapy approaches. Clinical trials of disease-modifying drugs targeting amyloid beta and tau proteins have shown encouraging outcomes in slowing cognitive decline and preserving brain function in some patients. Gene therapy trials focusing on genetic mutations associated with familial AD have demonstrated feasibility and safety, paving the way for broader applications of gene-based interventions [10].

Discussion

The results underscore the transformative potential of precision medicine in AD treatment, where personalized approaches based on genetic profiles and biomarker assessments can lead to more effective and tailored interventions. The integration of genomics into clinical practice holds immense promise for early diagnosis, risk stratification, and targeted therapies tailored to individual patients' needs. However, challenges such as cost-effectiveness, accessibility, and ethical considerations must be addressed to ensure equitable access to cutting-edge treatments for all AD patients [11-13].

Furthermore, the multifactorial nature of AD necessitates a comprehensive and holistic approach that combines pharmacological interventions with lifestyle modifications, cognitive interventions, and social support [14]. Collaborative efforts between researchers, clinicians, caregivers, and advocacy groups are essential to drive progress in AD research, enhance patient care, and ultimately strive towards a future where effective treatments and preventive strategies mitigate the impact of this devastating disease on individuals and society as a whole [15].

Conclusion

In conclusion, the landscape of Alzheimer's disease (AD) research and treatment has undergone significant evolution, marked by key advancements in therapeutic drugs, gene therapy, and genomic understanding. The development of disease-modifying drugs targeting amyloid beta and tau proteins offers promise in slowing disease progression and preserving cognitive function in affected individuals. Gene therapy, particularly in familial AD cases, demonstrates potential for personalized interventions based on genetic profiles.

The genomics era has ushered in precision medicine approaches, enabling early diagnosis, risk assessment, and tailored treatments. However, challenges such as cost, accessibility, and ethical considerations remain pertinent. Collaborative efforts across disciplines are crucial to overcome these challenges and translate research findings into clinical practice effectively. Moving forward, continued investment in research, innovative trial designs, and holistic care models that integrate pharmacological interventions with lifestyle modifications and support systems will be essential. By addressing these multifaceted aspects, we can strive towards better outcomes for AD patients and work towards a future where effective treatments and preventive strategies alleviate the burden of this complex neurodegenerative disorder.

Acknowledgment

None

Conflict of Interest

None

References

  1. Crystal S, Sambamoorthi U, Walkup JT, Akincigil A (2003) Diagnosis and treatment of depression in the elderly medicare population: Predictors, disparities, and trends.J Am Geriatr Soc 51: 1718.
  2. Google Scholar, Crossref, Indexed at

  3. Palmer BW, Heaton SC, Jeste DV (1999) Older patients with schizophrenia: challenges in the coming decades.Psychiatric Services 50: 1178–1183.
  4. Google Scholar, Crossref, Indexed at

  5. Lotrich F, Pollock B (2005) Aging and clinical pharmacology: implications for antidepressants.J Clin Pharmacol 45: 1106–1122.
  6. Google Scholar, Crossref, Indexed at

  7. Patorno E, Bohn R, Wahl P, Avorn J, Patrick AR, et al. (2010) Anticonvulsant medications and the risk of suicide, attempted suicide, or violent death.JAMA 303: 1401–1409.
  8. Google Scholar, Crossref, Indexed at

  9. Olesen JB, Hansen PR, Erdal J, Abildstrøm SZ, Weeke P, et al. (2010) Antiepileptic drugs and risk of suicide: a nationwide study.Pharmacoepidem Dr S 19: 518–524.
  10. Google Scholar, Crossref, Indexed at

  11. Leipzig R, Cumming R, Tinetti M (1999) Drugs and falls in older people: a systematic review and meta-analysis: I. Psychotropic drugs.J Am Geriatr Soc 47: 30–39.
  12. Google Scholar, Crossref, Indexed at

  13. Gill S, Bronskill S, Normand S, Anderson GM, Sykora K, et al. (2007) Antipsychotic drug use and mortality in older adults with dementia.Ann Intern Med 146: 775–786.
  14. Google Scholar, Crossref, Indexed at

  15. Casey D, Haupt D, Newcomer J, Henderson DC, Sernyak MJ, et al. (2004) Antipsychotic-induced weight gain and metabolic abnormalities: implications for increased mortality in patients with schizophrenia.J Clin Psychiatry 65(Suppl 7): 4–18.
  16. Google Scholar, Indexed at

  17. Schneider LS, Dagerman KS, Insel P (2005) Risk of Death with Atypical Antipsychotic Drug Treatment for Dementia.JAMA 294: 1934–1943.
  18. Google Scholar, Crossref, Indexed at

  19. Meijer WEE, Heerdink ER, Nolen WA, Herings RMC, Leufkens HGM, et al. (2004) Association of Risk of Abnormal Bleeding With Degree of Serotonin Reuptake Inhibition by Antidepressants.Arch Intern Med 164: 2367–2370.
  20. Google Scholar, Crossref, Indexed at

  21. Rasmussen K, Sampson S, Rummans T (2002) Electroconvulsive therapy and newer modalities for the treatment of medication-refractory mental illness.Mayo Clin Proc 77: 552–556.
  22. Google Scholar, Crossref, Indexed at

  23. Hamilton M (1960) A rating scale for depression.J Neurol Neurosurg Psychiatr 23: 56–62.
  24. Google Scholar, Crossref, Indexed at

  25. Cohen R, Brunoni A, Boggio P, Fregni F (2010) Clinical predictors associated with duration of repetitive transcranial magnetic stimulation treatment for remission in bipolar depression: a naturalistic study.J Nerv Ment Dis 198: 679–681.
  26. Google Scholar, Crossref, Indexed at

  27. DigheDeo D, Shah A (1998) Electroconvulsive Therapy in Patients with Long Bone Fractures.J ECT 14: 115–119.
  28. Google Scholar, Indexed at

  29. Takahashi S, Mizukami K, Yasuno F, Asada T (2009) Depression associated with dementia with Lewy bodies (DLB) and the effect of somatotherapy.Psychogeriatrics 9: 56–61.
  30. Google Scholar, Crossref, Indexed at

Citation: Jafari AH (2024) Exploring the Evolution of Alzheimer’s disease Treatments: From Early Observations to Modern Genomic Therapy. J Dement 8: 215. DOI: 10.4172/jmis.1000226

Copyright: © 2024 Jafari AH. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Post Your Comment Citation
Share This Article
Recommended Conferences
Article Usage
  • Total views: 229
  • [From(publication date): 0-2024 - Dec 03, 2024]
  • Breakdown by view type
  • HTML page views: 185
  • PDF downloads: 44
Top