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Glioblastoma (GBM), a grade IV glioma classified by World Health 
Organization (WHO), is considered highly malignant, vascular and 
invasive subtype [1]. GBM is most lethal during first year after initial 
diagnosis despite surgical resection, radiotherapy and/or chemotherapy 
[1,2]. Median survival of patients diagnosed with GBM is only 12 to 
15 months [1,2]. Anti-angiogenic therapies (AAT) were used as an 
adjuvant mainly against vascular endothelial growth factor and its 
receptors (VEGF-VEGFRs) to normalize tumor vasculatures in GBM 
patients. However, all of them provided minimal to none effect with 
no change in overall survival [3]. Hypoxia and neovascularization are 
histopathologic features of GBM [4]. Hypoxia activated proangiogenic, 
invasion and metastasis associated gene signatures, enabling tumor to 
become more malignant in a compromised microenvironment [5,6]. 
GBM tumor vessels are tortuous, disorganized, highly permeable, and 
have abnormal endothelial cells (ECs), pericyte coverage, and basement 
membrane structure [7,8]. Conventionally, tumor vessel formation 
occurs through angiogenesis, which is mediated by proliferation 
and migration of resident ECs [9]. Instead, vasculogenesis originates 
from circulating bone marrow derived cells (BMDCs) or endothelial 
progenitor cells (EPCs), which express VEGFR2, are recruited by 
VEGF followed by differentiation and incorporation into new tumor 
blood vessels [10].

So far, published studies have focused on the endothelial cell-
associated tumor vasculature development and BMDCs mediated 
vasculogenic mechanisms in tumor development. However, depending 
on tumor development, neovascularization occurs by alternate 
mechanisms such as vascular mimicry (VM) [11,12] and vascular trans-
differentiation from glioma stem cells (GSCs) [13-15]. Recently, VM has 
been given much attention, which is a process on neovascularization 
in tumor development [16,17]. VM channels are lined exclusively by 
tumor cells mimicking the function of endothelial cells. VM channels 
connect with endothelium-dependent vessels to create a network 
that provides for the tumor’s growth, invasion and metastasis [18]. 
Investigation of molecular mechanism of VM channel formation is 
poorly studied as well as VEGF receptors are expressed at high level by 
GBM tumor cells and contribution of VM in the neovascularization is 
poorly studied in GBM.

Newly-formed vessels in GBM are thought to arise by sprouting 
of pre-existing brain capillaries [19]. VM is a tumor cell-constituted, 
matrix-embedded fluid-conducting meshwork that is independent 
of endothelial cells and is positively correlated with poor prognosis 
[19,20]. Number of glioma polyploid giant cancer cells (PGCCs)  are 
associated with VM formation and tumor grade in human glioma 
[21]. Three kinds of microcirculation pattern existed in human glioma 
including VM, mosaic vessel (MV) and endothelium dependent vessel. 
There were more VM and MVs in high grade gliomas than those in low 
grade gliomas [21]. Authors reported that vascular channels of VM in 
GBM were composed of mural-like tumor cells that strongly express 
VEGFR2 [11,12]. GBM cell lines U87 and patient derived glioma cells, 
both of which express VEGFR2 and exhibit a vascular phenotype 
on matrigel [11]. VEGFR2 is an essential molecule to sustain the 
“stemness” of glioma stem cell-like cells (GSLCs) and their capacity to 
initiate tumor vasculature and growth [22]. GLSCs trans-differentiated 
into mural cells to drive VM in GBM. Most of them consisted of blood-

perfused vascular channels that coexpress mural cell markers αSMA 
and PDGFRβ, EGFR, and VEGFR2, but not CD31 or VE-cadherin 
[12]. This microvasculature coexisted with endothelial cell-associated 
vessels. vasculogenic capacity of CD133+ brain GLSCs and their 
cellular plasticity contribute to form vessel-like structures and provide 
a blood supply to GBM cells [14,15,20,23]. In addition, glioma cells 
mimic endothelial cells and incorporate into tumor vasculature, which 
may contribute to radio-resistance observed in GBM [24].

Like other hallmarks of inflammation such as production of ROS 
and DNA damage etc., VM may be the product of cancer associated 
inflammation. This is evident by several previous reports. For example, 
IL8 is identified as a signature paracrine cytokine, and blockade of IL8 
but not VEGF prevented vasculature development [25]. Extracellular 
IL8 trans-activated VEGFR2 and induces phosphorylation of 
extracellular signal-regulated kinases [25]. Since cancer stem cells 
(CSCs) are involved in the aggressive behavior of tumor, ubiquitin-
specific protease 44 (USP44) positive CSCs subclones under 
inflammatory environment showed increased levels of IL6 and IL8 
(ALDH1+/USP44+/IL-6+/IL-8+) that may contribute to the prediction 
of VM formation and invasiveness of tumor [26]. Tumor cell derived 
TNFα constitutes a TME signal that promoted endothelial phenotype 
via upregulation of the fibronectin receptor α(5)β(1) through trans-
differentiation [27]. TNFα-treated monocytes upregulated expression 
of endothelial markers, flk-1(VEGFR2/KDR) and VE-cadherin [27]. 
Together, studies suggested that chemokines expression has critical role 
in VM formation in tumors.

Since GBM is hyper-vascular in nature, different drugs e.g. 
vatalanib, cediranib, sunitinib, etc. have been used against VEGF-
VEGFR pathway to control abnormal angiogenesis in clinical trials 
[28-33]. Due to lower genetic instability in endothelial cells compared 
to tumor cells, it was anticipated that targeting VEGF-VEGFR 
pathways primarily in endothelial cells would decrease the tumor 
vasculature without imposing drug resistance. Regrettably, benefits of 
antiangiogenic treatments (AATs) are at best transitory, and this period 
of clinical benefit is followed by restoration of tumor growth [34].

In preclinical studies, VEGFR2 blockade in GBM through vatalanib, 
a receptor tyrosine kinase inhibitor, significantly increased tumor size 
as shown by DCE-MRI [35]. Vatalanib treatment induced hypoxia 
and was associated with the increased expression of VEGF, SDF-1, 
HIF-1alpha, VEGFR2, VEGFR3 and EGFR at the peripheral part of 
the tumors compared to that of central part of the treated rat glioma 
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[36]. Activation of alternative pathways of angiogenesis, vasculogenesis 
and involvement of stem cells were observed following AATs in GBM 
[33,37,38], which are tightly regulated through bFGF, angiopoietin1/2, 
GCSF, and SDF1α [35]. It is possible that hypoxia accompanying AAT 
induces VM channel formation to enhance the tumor growth [39]. 
However, study involving Flk-1 gene knockdown or VEGFR2 kinase 
inhibitor SU1498 abrogated VEGFR2 activity and impaired vascular 
function by suppressed intracellular signaling cascades, including 
FAK and MAPK ERK1/2. Surprisingly, blockade of VEGF activity by 
the neutralizing antibody Bevacizumab (Avastin) failed to recapitulate 
the impact of SU1498, suggesting that VEGFR2 -mediated VM is 
independent of VEGF [11]. By considering the demand of AATs 
including avastin and vatalanib in GBM and other cancers clinical 
trials, VM phenomenon is required to investigate in depth.

Chemo-therapeutic options are limited in glioma. AATs 
(e.g. vatalanib) showed transient effect on glioma growth and 
resulted into aggressive phenotypes such as increased invasion 
and neovascularization. VM facilitates molecular and phenotypic 
reprograming of tumor cells into endothelial-like cells in GBM and 
other hyper-vascular tumors. AATs such as avastin treatment has 
been failed to control VM, which could be the reason of therapeutic 
resistance in some cancers GBM. Therefore, novel agents are required 
to target neovascularization (VM) in GBM tumors.
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