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Editorial
Nature has slow occurring biogeochemical cycles of trace elements

and heavy metals and the cycles have significantly controlled
environmental fates of these elements. The trace elements and heavy
metals cannot be degraded like organic pollutants and they may
transform and become stable and persistent contaminants that
accumulate in soil and sediments [1-3]. Estuaries play an important
role in human civilization such as trading among populations. Many
industries are able to take advantage of the estuary for industrial
effluents as a source of cold water for heated discharge. As a result,
estuaries and coastal marine ecosystems receive a variety of pollutants
and contaminants that potentially have adverse effects not only on
biota living in these habitats, but also on the humans who consume
them [4]. Anthropogenic activities such as pollution, industrial,
offshore oil and gas exploration have increased the levels of trace
element and metal ions in natural water system. Improper disposal of
contaminants from hazardous waste sites and industrial facilities have
contributed to the estuary contamination as well. All these toxic
elements have been accumulated in soils and sediments and can be
ingested or stored in and enter into marina biota (fish and seafood)
that is then consumed by humans.

A fundamental understanding of physical behavior of the estuary is
essential to clarify the transport of heavy metals and trace elements in
an estuary. Estuaries are essentially mixing zones that bring together
salt and fresh water and are characterized by their strong chemical and
physical gradients. More importantly, salinity is the main factor in the
subdivision of contaminants between sediments, overlying, and
interstitial waters. The physiochemical parameters of estuaries are
more incline to affect the internal processes [5]. For example, processes
like precipitation and co-precipitation of solutes and adsorption both
aid in the dissolving and removal of trace elements, while re-
suspension of sediments and solubilisation of particulate matter aid in
the production of trace elements in the dissolve phase [6]. Even though
trace elements are usually found at concentrations of part per billion,
these elements are still significant in estuaries because of their toxicity
and the importance as micronutrients for many organisms [7]. In
estuaries, the transport of heavy metals and trace elements in soil/
sediment is contingent upon the chemical form and speciation of
elements. Once they reach the soil/sediments, they are adsorbed on
minerals and dispersed as dissimilar chemical forms with varying
bioavailability, mobility, and toxicity [8]. Heavy metal and trace
element distribution is generally the result of ion exchange, aqueous
complexation, biological immobilization, mineral precipitation, and
plant uptakes [9].

As a result of the affluence of heavy metals and trace elements, many
bio-indicators and eco-indicators have been proposed for enabling
detection of heavy-metal and trace element pollution. Oysters are great
bioindicators because of their ability to serve as sentinels to monitor
the estuary environment, ecological processes, and biodiversity. These
changes in the environment can result from human disturbances (e.g.
pollution and use changes) and natural stressors (e.g. hurricanes and
drought). Barua et al. [10] investigated the seasonal variation of Zn,
Cu, Pb, Mn, Ni, Cd, Fe and Co in oysters (Saccostrea cucullata) and
water body collected in the northeastern coast of India [10]. Heavy
metals accumulated in the water body in the following order: Fe, Mn,
Zn, Cu, Pb, Ni, Co, and Cd, while those in oysters: Zn, Fe, Cu, Mn, Pb,
Co, Ni, and Cd. Unique seasonal patterns with the highest
concentrations during monsoon season and the lowest concentrations
during pre-monsoon season. This variation may be attributed to large
run-off from adjacent land masses during the monsoon. These results
showed that seasonal variations greatly influence trace metals
concentration levels during the monsoon season. Changes during
seasons, temperature fluctuations in oysters may lead to a bigger
concern involving climate change [11]. Relationships of Cu, Pb, Zn,
Cd, Cr, Fe and Mn concentrations between sediment and oyster
(Crassostrea virginica) tissues and shells have been studies from Gulf
of Mexico estuaries [12]. Zinc, cadmium and copper ranked as the top
three heavy metals accumulated in the average oyster tissue and oyster
shell. Thus, variations in concentrations of heavy metals in different
parts of shells can provide a record of environmental changes during
oyster growth [9]. We previously reported that native earthworms may
be used as a potential mercury ecological bio-indicator (bio-marker)
for demonstrating mercury bioavailability and ecotoxicity in the
floodplain ecosystem [13]. The results also show strong linear
relationships between mercury concentrations in native earthworms
(both mature and immature groups) and the non-cinnabar mercury
form, while cinnabar mercury is less bioavailable to native earthworms
[13].

The subcellular distribution of heavy metals was assayed to better
understand the subcellular distribution of metals. Cellular debris was
the main subcellular fraction binding the metals. Metallothionein-like
proteins increased their importance in binding Zn as tissue
concentration of Zn increased [14]. Metal exposure can possibly
induce physiological, and biochemical changes in cells receiving inputs
of trace metals as a result of the induction of metal detoxification
processes. In aquatic invertebrates (e.g. oysters), metals are usually
stored in various forms, metal- rich granules (MRG), metallothioneins
(MT) or metallothionein-like proteins (MTLP). On the other hand, the
enzymatic responses were found in the gills and digestive gland of
pearl oyster, P. fucata exposed to copper at 0.05 µM and 0.5 µM,
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respectively [15]. Acid phosphatase, phenoloxidase, superoxide
dismutase, Se-dependent glutathione peroxidase and alkaline
phosphatase were five enzymes that were investigated. The results
supported the proper usage of enzymes as biomarkers and laid a
foundation for understanding of the defense mechanism of the pearl
oyster [15].

 Marine organisms such as oysters have the ability to concentrate
high amounts of arsenic in their tissues [16]. The ubiquitous element
arsenobetaine in marine animals has been studied for many years [17].
The results showed arsenic concentration of each tissue part ranged
from 22.1 to 45.7 µg g-1 of dry tissues in the pearl free oysters and from
27.4 to 50.4 µg g-1 of dry tissue in the pearl-containing pearl oysters
[16].

Zinc is another common essential trace metal element found in the
Earth's crust, in the air, soil, water, and is present in all foods [18]. Zinc
compounds are commonly used in the pharmaceuticals industry as
ingredients in some common products, such as vitamin supplements,
sun blocks, diaper rash ointments, deodorants and antidandruff
shampoos [18]. Zinc is an essential trace metal with biological and
public health significance. An inadequate amount of zinc has been
associated with growth retardation, delayed maturation and infection
susceptibility [19]. Zinc homeostasis is primarily maintained through
the gastrointestinal system (small intestine, liver and pancreas) via
absorption of exogenous zinc and gastrointestinal secretion and
excretion of endogenous zinc [20]. Zinc functions as a cofactor for
many enzymes in both aquatic and terrestrial organisms [21]. Oysters
are a good source of Zn and are considered an important dietary Zn
supplement [22]. Zinc is regulated in marine organisms; however
oysters tend to accumulate Zn to a very high body concentration [23].

Zn exposure could affect the overall bioaccumulation of Cd and Cu
in three populations of the oyster Crassostrea hongkongensis [24]. The
results suggest that the increased bioaccumulation of Cd and Cu is
highly dependent on tissue Zn concentration. The magnitude from
high bioaccumulation levels is most likely associated with a history of
metal pre-exposure. The results revealed that as the tissue Zn
concentration increased, the concentration of Cd/Cu associated with
metallothionein-like proteins (MTLP), metal-rich granules (MRG)
progressively increased [24].

Transition metals (e.g. zinc and cadmium) act as catalysts in the
oxidative reactions in biological macromolecules. Therefore, metal
toxicity may be associated with oxidative tissue damage [25].
Organisms guard themselves from metal-induced damage at the
molecular and cellular levels using two protective strategies. First, the
cellular defense aids to repair and protect macromolecules from metal
toxicity. Second, the metal-specific induction of metallothioneins
(MTs) synthesis is used to change metal metabolism. MT is a collective
name for a superfamily of low molecular weight (6-7 kDa) metal-
binding proteins or polypeptides with extremely high thiolate sulfur
and metal content [24]. MTs are likely to be involved in zinc
metabolism and protection against certain metal toxicities [26].
Metallothioneins (MTs) or MTLP are recognized in the detoxification
of accumulated metals, although the biological significance and
reactivity of the different detoxified forms remain unknown. MTLP
induction is one of the well-documented strategies in metal
detoxification in aquatic animals, and the metal-binding proteins can
sequestrate excess intracellular metals effectively. MTLP is important
because it serves as protection from metal toxicity [27,28]. Despite
several studies on Zn uptake and depuration in oysters, the exact

mechanism of the regulation of Zn tissue concentration is not
understood.

Scientific literature revealed that the majority of experimental
studies on accumulation of trace elements and heavy metals in oysters
were based on dose-response experiments. In these experiments, the
exposure levels were usually higher than the real environmental
conditions where the marine organisms were located [29]. The high
exposure levels of trace metals in oysters allowed measuring
bioaccumulation and controlling exposure levels in seawater while
detecting ecotoxicological responses to contamination using current
applied analytical techniques. According to a study conducted by
Sanudo-Wilhelmy [30], approximately 70% of articles about dissolved
metals in National Oceanic and Atmospheric Administration (NOAA)
and in the United States Environment Protection Agency (U.S. EPA)
programs are from five estuaries: Rhode Island, New York, South
Carolina, Delaware, and Maryland in the United States [30].

There is an increasing interest in biogeochemistry of trace elements
and heavy metals in marine ecosystems, due to the rapid and
observable changes [31-35]. Comparative approach (observational and
conceptual model) should provide a deep insight for the study of
ecosystem responses to anthropogenic pollution and biogeochemical
responses. Although heavy metal and trace element contamination in
estuary ecosystem remains evident, even more background knowledge
of sources, chemistry, toxicity, in contaminated soils is needed to
provide an alternate for detecting the sensitivity of estuarine
ecosystems [32].
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