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Cancer chemotherapy focused towards large molecules or enzymes 
fails to differentiate between normal and cancerous cells, ultimately 
leading to numerous lethal adverse effects. Erratic, incomplete and 
short-term tumor responses have been observed from cytotoxic 
chemotherapies. In contrast, tumor development or progression is 
halted by targeted therapies by interfering with the molecular targets. 
These targeted therapies will provide greater specificity toward 
cancerous cells along with wider therapeutic window and low toxicity. 
These therapies are in combination with conventional chemotherapy 
provides additive or synergistic anti-cancer activity. Hence, targeted 
therapies may provide beneficial clinical effects ultimately leading to 
a novel and encouraging approach to chemotherapy. Out of several 
targeted therapies, tyrosine kinase inhibitors are being explored as 
leading cancer therapy [1,2]. Tyrosine kinases act as an important 
mediator in the modulation of growth signaling cascade. They 
play a critical role in numerous biological developments such as 
differentiation, metabolism and apoptosis with respect to external 
and internal stimuli. Recent advances have shown their vital role 
in pathophysiology of cancer. Although, their activity is strongly 
regulated in non-cancerous cells, they may secure altering functions 
due to mutations, overexpression and autocrine paracrine stimulation, 
leading to malignancy. Small molecule tyrosine kinase inhibitors 
are considered as promising therapeutic approach because of their 
selective blocking tactic towards constitutive oncogenic activation in 
tumor cells [1,3].

Enzymes responsible for catalyzing the transfer of the γ phosphate 
group from adenosine triphosphate to target proteins are referred as 
tyrosine kinases [2,4]. They are categorized as (i) receptor tyrosine 
kinases (RTK) such as epidermal growth factor receptor (EGFR/
ErbR), platelet-derived growth factor receptor (PDGFR), vascular 
endothelial growth factor receptor (VEGFR) and fibroblast growth 
factor receptor (FGFR); and (ii) non-receptor tyrosine kinase (NRTK) 
such as SRC, ABL, FAK and Janus kinase. Receptor tyrosine kinase also 
possesses enzymatic kinase activity in addition to being cellular surface 
membrane receptors. The RTK has a multi-domain extracellular 
ligand for assigning ligand specificity, a single pass transmembrane 
hydrophobic helix and a cytoplasmic portion holding a tyrosine kinase 
domain. The structural organization of NRTK has a kinase domain 
and frequently owns several additional signaling or protein-protein 
interacting domains [3,5-7].

Tyrosine kinases play a vital role in cancer molecular pathogenesis. 
They have been also recognized as potential anticancer targets leading 
to number of marketed anti-cancer drugs. Sequencing efforts by 
Human genome project has efficiently utilized tyrosine kinases and 
thus provided more opportunities in the filed on anti-cancer drug 
discovery. Current advances in the field of molecular pathophysiology 
of cancer have provided vast information about tyrosine kinases. RTK 
have been found to be upstream or downstream of epidemiologically 
relevant oncogenes or tumor suppressors. Tyrosine kinase inhibitors 
are utilized to target RTK which is overexpressed in cancer have been 
recognized as a potential target using [3,5,8-18]. In the past decade, 
the US Food and Drug Administration have approved several tyrosine 
kinase inhibitors which have been listed in Table 1.

In conclusion, the important role of tyrosine kinases in controlling 
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Tyrosine Kinase 
Inhibitor

Target Class

Afatinib EGFR/ErbB2 Small Molecule

Axitinib VEGFR1/VEGFR2/
VEGFR3/PDGFRB/c-KIT

Small Molecule

Bosutinib BcrAbl /SRC Small Molecule

Cetuximab ErbB1 Monoclonal Antibody

Crizotinib ALK/Met Small Molecule

Dasatinib Multiple Targets Small Molecule

Erlotinib ErbB1 Small Molecule

Fostamatinib Syk Small Molecule

Gefitinib EGFR Small Molecule

Ibrutinib BTK Small Molecule

Imatinib Bcr-Abl Small Molecule

Lapatinib ErbB1/ErbB2 Small Molecule

Nilotinib Bcr-Abl Small Molecule

Pazopanib VEGFR2/PDGFR/c-kit Small Molecule

Pegaptinib VEGF RNA Aptamer

Ruxolitinib JAK Small Molecule

Sorafenib Multiple Targets Small Molecule

Sunitinib Multiple Targets Small Molecule

Vandetanib Multiple Targets Small Molecule

Vemurafenib BRAF Small Molecule

Table 1: List of FDA approved tyrosine kinase inhibitors [9-18].

cellular growth and differentiation has a profound effect in human 
oncologic diseases. Potential clinical applications of tyrosine kinase 
inhibitors have been shown by the recent approval of them for various 
neoplastic diseases. In addition to marketed approved tyrosine 
kinase inhibitors, numerous human trials are undergoing in order 
to bring best from them. Focus in high throughput genome based 
molecular therapeutics can yield tyrosine kinase inhibitors that more 
therapeutically effective and efficient. All these intensive effort may 
overlay the foundation to shape personalized cancer therapeutics. 
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