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Abstract
Immune Checkpoint Inhibitors (ICIs) have changed the treatment mode of Non-Small Cell Lung Cancer (NSCLC) 

patients, but precise biomarkers are still needed to screen out those could benefit from ICIs. EPHA3 is the gene 
that codes for the Eph receptor A3 and has been found to be associated with lung cancer, but the relationship 
between EPHA3 and ICIs still need to be explored. In our study, data of 344 NSCLC patients receiving ICIs and 954 
NSCLC patients treated without ICIs were downloaded from the Memorial Sloan Kettering Cancer Center (MSKCC) 
database and The Cancer Genome Atlas (TCGA) database respectively. Patients were divided into EPHA3-mutant 
type (EPHA3-Mut) group and EPHA3-wild type (EPHA3-Wt) group by EPHA3 mutation status. Kaplan-Meier survival 
analysis found that the EPHA3-Mut group (n=36) have got higher Overall Survival (OS) rates than the EPHA3-Wt 
group (n=308) (median OS: 3 years (95% Confidence Interval (CI)=1 to not reached) vs. 0.917 years (95% CI=0.75 to 
1.17, p=0.025) in the MSKCC cohort, while differences of OS (p=0.083) in the TCGA cohort have not been observed. 
Besides, EPHA3 mutation was related to higher Tumor Mutation Burden (TMB) (p<0.0001), elevated Neoantigen 
Load (NAL) (p<0.0001) and greater mutation rate in the DNA Damage Response (DDR) pathways. EPHA3-Mut 

Analysis (GSEA) showed that several immune response-related pathways were up-regulated in the EPHA3-Mut 
group. According to the study, EPHA3 mutation may be related with the effectiveness of ICIs in NSCLC patients.
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Introduction
ICIs have altered the treatment mode of NSCLC, some patients 

with NSCLC achieved long-term survival through immunotherapy [1]. 
However, there are still majority of patients who cannot significantly 
benefit from immunotherapy [2]. Therefore, we urgently need 
some biomarkers to screen out patients who could benefit from 
immunotherapy. Up to now, there are some potential biomarkers such 
as PD-L1 expression and Tumor Mutation Burden (TMB) already 
been found out to predict the curative effect of ICIs [3]. However, in 
some studies, these potential biomarkers cannot accurately predict the 
curative effect of immunotherapy, for example, some scholars found 
that NSCLC patients with a PD-L1 expression level of 5% or more 
did not reach longer Progression-Free Survival (PFS) after treated 
with Nivolumab [4]. Thus, more precise biomarkers of ICIs remain to 
be explored. Receptor Tyrosine Kinases (RTKs) is the largest class of 
enzyme linked receptor proteins, many types of RTKs play a critical part 
in the development and growth of tumors and are related with curative 
effect of ICIs. For instance: Epidermal Growth Factor (EGF) Receptor 
(EGFR) pathway activation could reduce the PD-L1 expression in 
NSCLC patients and is correlated with immunosuppression, Fibroblast 
Growth Factor (FGF) Receptor 4 (FGFR4) was one of the main targets 
for down-regulation of PD-L1 in vitro, while FGFR2 promotes PD-L1 
expression in colorectal cancer through JAK/STAT3 signaling pathway, 
interruption of gastrin at the Cholecystokinin (CCK) receptor may 
alter tumor immune cells, which may could affects the efficacy of 
immunotherapy [5-8]. Eph receptor family is the largest known family 
of RTKs, according to their extracellular domains, Eph receptors are 
divided into two subgroups, Eph receptor A (EphA) and Eph receptor 
B (EphB), EphA is consisted of 9 members, while EphB is consisted 
of 5 members [9]. EPHA3 is the gene that codes for the Eph receptor 
A3, it has been found to be associated with the development of lung 

adenocarcinoma and thus, we speculated whether EPHA3 has effect on 
the curative effect of ICIs.

Therefore, we conducted a comprehensive analysis through an 
immunotherapy cohort (MSKCC cohort), and TCGA cohort to 
determine whether EPHA3 is associated with the curative effect of 
ICIs on NSCLC patients [10]. The result showed that EPHA3 mutation 
could improve NSCLC patients’ OS treated with ICIs. Besides, EPHA3 
mutation is connected with greater immune cell soakage in the Tumor 
Immune Microenvironment (TIME), higher tumor antigenicity, more 
gene mutations in the DNA Damage Response (DDR) pathways and 
more activation of immune-related pathways in NSCLC patients. These 
results imply that EPHA3 mutation may act as predictive biomarker of 
immunotherapy efficacy in patients with NSCLC. 

Materials and Methods 

Clinical cohorts and genome characteristics

To find out the relationship between EPHA3 mutation and 
ICIs, we downloaded previously published immunotherapy cohort 

group showed higher CD8 +  T cells (p<0.05) an Natural Killers (NK) cells (p<0.01) infiltration. Gene Set Enrichment 
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from cBioPortal, as discovery cohort (n=344, EPHA3-Mut group vs. 
EPHA3-Wt group=36:308), all patients in the cohort were NSCLC 
patients recruited from MSKCC who were treated with PD-1 or PD-
L1 inhibitors [10]. We also downloaded somatic mutation of NSCLC 
patients who had not treated with ICIs form TCGA database from the 
Genomic Data Commons (GDC) portal, after excluding the samples 
with incomplete information, there are 954 (EPHA3-Mut vs. EPHA3-
Wt =113:841) samples. Targeted Next-Generation Sequencing (NGS) 
was used for the analysis of the somatic mutation data from the MSKCC 
cohort. Maftools package in the R was used to visualize the top 20 
most commonly mutated genes and clinical features. Besides, the co-
mutation and mutually exclusive mutation of top 25 most commonly 
mutated genes in MSKCC cohort was explored through Maftools 
package.

Survival analysis

MSKCC cohort and TCGA cohort are divided to EPHA3-Mut group 
and EPHA3-Wt group according to EPHA3 mutation status. Kaplan-
Meier survival curves analyses were used to compare OS between 
EPHA3-Mut group and EPHA3-Wt group in both two cohorts. Besides, 
we performed univariate and multivariate cox regression analysis to 
explore the relationship between patients’ OS and some frequently 
mutated genes, including EPHA3, as well as clinical features of NSCLC 
patients in the MSKCC cohort. In this analysis, TMB was divided into 
two groups according to dividing line of 10 Mut/Mb [11,12].

Analysis of tumor antigenicity

To investigate whether EPHA3 mutation has an effect on tumor 
antigenicity, we explored the level of TMB, Neoantigen Load (NAL) as 
well as mutations in DDR pathways in both EPHA3-Mut group and 
EPHA3-Wt group. The number of non-synonymous somatic mutations 
is divided by 38 Mb to obtain the TMB value. NAL data and mutation 
data in DDR pathways were obtained from researches of Thorsson et al., 
and Knijnenburg et al., respectively [13,14].

Analysis of immune cell soakage was performed

To explore the connection of EPHA3 mutation and immune 
soakage, we used the data of 22 kinds of immune cells’ signature matrix 
obtained from CIBERSORTx, to explore the feature of immune cell 
soakage in the TIME of patients in the TCGA cohort, we then compared 
the immune cell soakage status of EPHA3-Mut group and EPHA3-Wt 
group [15]. Online analytical tool CIBERSORTx was applied to conduct 
the analysis.

Gene set enrichment analysis

To further study the biological pathways related to EPHA3, we 
downloaded hallmark gene sets and ontology gene sets from Molecular 
Signatures Database (MSigDB) of the Broad Institute [16]. Then, 
clusterProfiler package of R was used for the GSEA. Pathways with 
p<0.05 were considered significantly different.

Statistical analysis

Fisher’s exact test was used to analyse co-mutation and mutually 
exclusive mutation of top 25 most commonly mutated genes in MSKCC 
cohort. Kaplan-Meier method with the log-rank test were applied to 
graph survival curves. Univariate and multivariate cox regression 
analysis were conducted to determine the potential of EPHA3 mutation, 
other common mutated gene mutations and clinical features to predict 
the efficacy of immunotherapy in the MSKCC cohort. Mann-Whitney 

U test was used to compare the differences of TMB and NAL between 
EPHA3-Mut group and EPHA3-Wt group. Gene mutations of DDR 
pathways in EPHA3-Mut group and EPHA3-Wt group in TCGA cohort 
were compared using Chi-square test. All statistical tests were two-
sided.

Results 

Clinical and genetic characteristics of patients

Our discovery cohort is consisted of 344 NSCLC patients receiving 
ICIs, 119 (35.5%) of them were over 71 years old, 178 (51.7%) of them 
were men, 166 (48.3%) of them were women, 268 (77.9%) were lung 
adenocarcinoma, 44 (12.8%) were lung squamous cell carcinoma, other 
32(9.3%) of them were other kind of NSCLC. The median TMB was 
7.76 mutations/Mb (range, 0-96.5 mutations/Mb). The waterfall plot 
was used to demonstrate these genes whose mutation rate was in the 
top 20, as well as clinical features of the NSCLC patients in MSKCC 
cohort, as shown in the plot, EPHA3 was the seventh most frequently 
mutated gene. Besides, Gene interaction analysis of MSKCC cohort 
shows that EPHA3 tended to co-mutate with KRAS, ZFHX3, PTPRT 
and RBM10 (p<0.05) (Figures 1a and 1b).

The relationship of OS and EPHA3 mutation in NSCLC 
patients receiving ICIs

To analyse the contribution of EPHA3 to prognosis of NSCLC 
patients treated with ICIs, we conducted survival analyses for MSKCC 
and TCGA cohorts. As showed in the Kaplan-Meier analysis, in 
the MSKCC cohort, EPHA3-Mut group had observably longer OS 
(p=0.025). The median OS was 3 years (95% CI=1 to not reached) in 
EPHA3 EPHA3-Wt 
group. Compared with MSKCC cohort, there is no significant differences 
of OS (p=0.083) between EPHA3-Mut group and EPHA3-Wt group in 
the TCGA cohort. The median OS was 3.98 years (95% CI=3.3 to not 
reached) in EPHA3-Mut group vs. 3.53 years (95% CI=3.03-4.5) in the 
group of EPHA3-Wt group. Univariate cox regression analysis showed 
that TMB (HR=0.714, 95% CI=0.530-0.961, p=0.026) and EPHA3 
(HR=0.57, 95% CI=0.342-0.949, p=0.031) is associated with longer 
OS. While multivariate cox regression analysis showed that the effect 
of EPHA3 on OS did not reach statistical significance (HR=0.635, 95% 
CI=0.372-1.086, p=0.097) (Figures 2a-2d).

EPHA3 mutation is relative to the enhancement of tumor 
immunogenicity and gene mutations in DDR pathways

Tumor immunogenicity is related to the efficacy of immunotherapy. 
To some degree, TMB and NAL could reflect the immunogenicity of 
tumor and are related to the curative effect of ICIs [17,18]. To find out 
the relationship between EPHA3 mutation and tumor immunogenicity, 
we investigated the differences of TMB and NAL between EPHA3-Mut 
group and EPHA3-Wt group. In both MSKCC cohort (p<0.001) and 
TCGA cohort (p<0.0001), TMB of EPHA3-Mut group was higher than 
EPHA3-Wt group. We also observed that EPHA3-Mut group shows 
significantly higher NAL compared to EPHA3-Wt group in TCGA 
cohort (p<0.0001). 

Some reports showed that some mutations in DDR pathways 
could represent genomic instability and may be related to better 
outcomes of immunotherapy [19]. We compared mutations in 9 DDR 
pathways between EPHA3-Mut and EPHA3-Wt group in TCGA 
cohort. As expected, in EPHA3-Mut group, the mutation rates were 
higher in 7 DDR pathways, including Base Excision Repair (BER), 
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Figure 1: Landscape of somatic mutation features and clinical features in the MSKCC cohorts. Note: a) Top 20 most frequently mutated genes and clinical 
characteristics in the MSKCC cohorts; b) Co-occurencing mutations and mutually exclusive mutations of the top 25 most frequently mutated genes in the MSKCC 
cohorts.

EPHA3 mutation is correlated with immune soakage

The immune status of the TIME also has effects on the efficacy 
of immunotherapy [20]. To investigate how the EPHA3 mutation 
affects TIME, we used the immune cell signature matrix to study the 
differences of soakage of immune cells between EPHA3-Mut group and 
EPHA3-Wt group in TCGA cohort. As expected, in EPHA3-Mut group, 
CD8+ T cells (p<0.05) as well as activated NK cells (p<0.01) were found 
obviously increased (Figure 4).

Homologous Recombination (HR), Nucleotide Excision Repair (NER), 
Nonhomologous End-Joining (NHEJ), Mismatch Repair (MMR), 
Translesion DNA Synthesis (TLS) and Fanconi Anemia (FA) (Figures 
3a-3d).

These results indicated that EPHA3 mutation is correlated with the 
enhancement of tumor immunogenicity and more gene mutations in 
DDR pathways, which suggested a better prognosis of NSCLC patients 
receiving ICIs.
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Figure 2: Association between EPHA3
EPHA3 mutation in the MSKCC cohort; b) Kaplan-Meier curves comparing OS of patients with or without EPHA3 mutation in the TCGA cohort; (c) Forest plot 
displaying the results of univariate cox proportional-hazard regression analysis of EPHA3 mutation and other common TKI-sensitive gene mutations in the 
MSKCC cohort; (d) Forest plot displaying the results of multivariate cox proportional-hazard regression analysis of EPHA3 mutation and other common TKI-
sensitive gene mutations in the MSKCC cohort.

 

Figure 3: Association of EPHA3 mutation with tumor mutation burden, neoantigen load and mutations in DNA Damage Repair (DDR) pathways in NSCLC 
EPHA3 mutated patients had a markedly higher TMB (number of mutations per Mb) in both the MSKCC-IO cohort and the TCGA cohort; 

(c) Comparison of NAL (number of neoantigen per Mb) between the EPHA3-Mut and EPHA3-Wt group tumors in the TCGA cohorts (Mann-Whitney U test); (d) 
Comparison of mutation rate in the DDR pathways between the EPHA3-Mut group and EPHA3-Wt group in the TCGA cohort (Chi-square test); *p<0.05; **p<0.01; 
***p<0.001;****p<0.0001; ns: No significance.
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Figure 4: Association of EPHA3 mutation with immune infiltration. Infiltration frequencies of 22 types of immune cells in the EPHA3-Mut group and EPHA3-Wt 

are related to tumorigenesis, tumor immunity and tumor angiogenesis 
[21,22]. Recently, some studies indicated that Eph receptors could 
suppress the immune response by modulate innate and adaptive 
immunity in the TME [23]. Thus, researchers hypothesized that we 
may inhibit the function of these receptors to raise immune response 
and enhance the efficacy of ICIs. In recent studies, EPHA5 and EPHA7 
have been found to be related to immunotherapy efficacy in patients 
with lung cancer [24,25]. Besides, researchers have found that EPHA3 
was one of the most commonly mutated genes in lung cancer and 
may inhibit the formation of lung adenocarcinoma [26]. However, the 
relationship between EPHA3 mutation and ICIs has not been found 
out yet. Our study is the first to represent the association between the 
efficacy of ICIs and EPHA3 mutation in NSCLC patients, the result 
showed that among NSCLC patients receiving ICIs, those with EPHA3 
mutation tend to get longer OS. Our study enriched the group of ICIs' 
prognostic biomarkers, strengthened the connection between Eph 
family and immunotherapy. In our study, EPHA3 tended to co-mutate 
with KRAS, ZFHX3, PTPRT and RBM10. ZFHX3 mutation and PTPRT 
mutation have been found as a protective biomarker for immunotherapy 
on NSCLC patients [27,28]. RBM10 deficiency was found been 
associated with higher TMB and PD-L1 expression in NSCLC patients, 
that means RBM10 may affect the prognosis of patients using ICIs. 
Several reports also showed that tumors with KRAS mutated showed 
higher TMB and patients with KRAS mutated tended to benefit more 
from PD-1 inhibitors [29-31]. These findings support our hypothesis 
that EPHA3 mutation may has a positive impact on the efficacy of 
immunotherapy in NSCLC patients. ICIs kill tumor cells based on their 
immunogenicity, which is primarily determined by tumor antigenicity 
and antigen presentation efficiency [32]. Antigens enable the immune 
system to distinguish body's own tissues and cancer cells. Neo-antigens 
are derived from about 10% of the non-synonymous somatic mutations 
and play an important role in antitumor response, for they are main 
targets of T-cell-mediated antitumor immunity [33,34]. In this study, 
EPHA3-Mut group showed higher TMB and NAL level, indicating that 
EPHA3 mutation may be associated with better prognosis of NSCLC 
patients receiving immunotherapy. Some studies reported that patients 

EPHA3 mutation is correlated with changes in some tumor-
related biological pathways

In order to identify whether EPHA3 mutation acts on tumor-
related biological pathways, we performed GSEA on TCGA cohort 
and compared the results of EPHA3-Mut group and EPHA3-Wt group. 
As shown in Supplementary Figure 1, a number of immune-related 
pathways were markedly up-regulated in the EPHA3-Mut group, such 
as activation of immune response pathway, B cell activation pathway, 
INF-γ response. In contrast, some pathways such as mTORC1 signaling 
pathway and MYC targets V1 pathway were down-regulated in the 
EPHA3-Mut group. These results showed that EPHA3 mutation has 
positive effect on immune soakage and immune response.

Discussion
Through univariate cox regression analysis and Kaplan-Meier 

survival analysis, we observed that EPHA3 mutation has a favorable 
effect on OS of NSCLC patients receiving ICIs, while no effect on 
patients who treated without ICIs. Although the multivariate cox 
regression analysis of the effect of EPHA3 on OS did not reach statistical 
significance, there is still an obvious tendency of EPHA3 to prolong OS 
of NSCLC patients treated with ICIs (HR=0.635), the reason for not 
reaching statistical significance (p=0.097) may be that the sample size 
was insufficient to detect the significance of the difference. Through 
gene interaction analysis, we found that EPHA3 co-mutated with 
several genes that may have potential effect for immunotherapy. Then, 
our investigation on tumor immunogenicity discovered that there 
are higher TMB, NAL, as well as more mutations in DDR pathways 
in EPHA3-Mut group. In addition, increased soakage of immune cells 
in Tumor Microenvironment (TME) were found in EPHA-Mut group. 
GSEA analysis showed that some tumor-related biological pathways, 
including immune response-related pathways were up-regulated 
in EPHA3-Mut group, while some pathways were down-regulated. 
These findings proved that EPHA3 may act as a potential prognostic 
biomarker for immunotherapy. Eph receptors are closely related to 

group in the TCGA cohort. 

Note:

 *p<0.05; **p<0.01; ns: No significance.Note:

cellular repulsion, adhesion and other activities, 

EPH

 gene mutations EPH
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mechanism of how EPHA3 mutation works on immunotherapy and 
further preclinical and prospective clinical studies are needed to assess 
the clinical potential of EPHA3 mutation as a biomarker to predict the 
prognosis of NSCLC patients those who receiving ICIs.
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