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Abstract
Cancer stem cells (CSCs) are a subpopulation of cancer cells with self-renewing and tumor-initiating capabilities, 

playing a pivotal role in cancer progression, recurrence, and therapy resistance. The tumor microenvironment 
(TME), a dynamic and complex ecosystem surrounding the tumor, significantly influences the behavior of CSCs. 
This review explores the multifaceted interactions between CSCs and the TME, focusing on how factors such as 
hypoxia, immune cells, extracellular matrix, and metabolic reprogramming contribute to CSC maintenance, plasticity, 
and therapeutic resistance. Understanding these interactions may unveil new therapeutic strategies to effectively 
target CSCs and improve cancer treatment outcomes.
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Introduction
Cancer is a heterogeneous disease characterized by the presence 

of diverse cell populations within the tumor mass. Among these 
populations, cancer stem cells (CSCs) have gained attention due 
to their capacity for self-renewal, differentiation, and resistance to 
conventional therapies. The concept of CSCs proposes that only a 
small subset of cells within a tumor is responsible for sustaining tumor 
growth, metastasis, and recurrence. However, the behavior of CSCs is 
not solely intrinsic to their nature; it is profoundly influenced by the 
tumor microenvironment (TME), which provides essential cues that 
regulate CSC function [1,2].

The TME comprises a variety of components, including stromal 
cells, immune cells, blood vessels, extracellular matrix (ECM), and 
soluble factors such as cytokines and growth factors. This review 
aims to examine how different elements of the TME contribute to 
the regulation of CSCs and how these interactions impact cancer 
progression and resistance to treatment [3].

Components of the Tumor Microenvironment

Hypoxia: Hypoxia, or low oxygen levels, is a hallmark of solid 
tumors due to their rapid growth and insufficient blood supply. 
Hypoxia-inducible factors (HIFs) play a key role in the adaptation of 
cells to hypoxic conditions. In CSCs, HIFs up regulate genes associated 
with stemness, invasion, and resistance to apoptosis, enhancing their 
tumor-initiating capacity. Hypoxia has been shown to promote the 
expression of stem cell markers, such as OCT4, SOX2, and NANOG, 
which are crucial for maintaining CSC properties. Moreover, hypoxia 
increases the expression of genes involved in angiogenesis (e.g., VEGF) 
and epithelial-to-mesenchymal transition (EMT), processes that 
further support CSC survival and metastasis [4,5].

Immune cells: The interaction between CSCs and immune cells 
within the TME plays a critical role in immune evasion and tumor 
progression. CSCs can recruit and reprogram immune cells, such as 
macrophages, neutrophils, and regulatory T cells (Tregs), to create an 
immunosuppressive environment that protects them from immune 
attack. Tumor-associated macrophages (TAMs), in particular, secrete 
pro-inflammatory cytokines and growth factors (e.g., IL-6, TGF-β) 
that promote CSC stemness and contribute to therapy resistance. 
Additionally, CSCs can express immune checkpoint molecules, such 
as PD-L1, that inhibit the activity of cytotoxic T cells, allowing CSCs to 

evade immune surveillance [6].

Extracellular matrix (ECM): The ECM provides structural 
support to the tumor and serves as a reservoir for signaling molecules. 
The biochemical and mechanical properties of the ECM can influence 
CSC behavior. For example, the stiffness of the ECM has been shown to 
promote the stem-like properties of CSCs, with mechanotransduction 
pathways activating YAP/TAZ signaling, which enhances CSC self-
renewal. Furthermore, ECM remodeling enzymes, such as matrix 
metalloproteinases (MMPs), can release growth factors sequestered in 
the matrix, which subsequently interact with CSCs to promote their 
proliferation and survival [7,8].

Stromal cells: Cancer-associated fibroblasts (CAFs) are a major 
component of the TME and play a key role in supporting CSC function. 
CAFs secrete various factors, such as hepatocyte growth factor (HGF), 
fibroblast growth factor (FGF), and interleukins, which enhance CSC 
stemness, EMT, and resistance to apoptosis. CAFs can also remodel 
the ECM to create a more favorable environment for CSC survival and 
invasion. Moreover, CAFs have been implicated in the creation of a 
“niche” that supports the maintenance of CSCs in a quiescent state, 
which is associated with resistance to chemotherapy [9].

Glycolysis: In hypoxic regions of the tumor, CSCs upregulate 
glycolysis, which provides rapid energy production and generates 
metabolic intermediates required for biomass synthesis. Glycolysis also 
contributes to the acidification of the TME, which can promote the 
invasive behavior of CSCs and suppress immune cell function.

Oxidative phosphorylation (OXPHOS): In well-oxygenated 
regions, CSCs can switch to OXPHOS to sustain their energy demands. 
The dependence on OXPHOS has been observed in certain types of 
CSCs, such as those in breast cancer, where mitochondrial biogenesis 
and function are critical for maintaining their stem-like properties. 
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Targeting mitochondrial metabolism in CSCs has emerged as a 
potential therapeutic strategy to eliminate this resilient cell population 
[10].

CSC plasticity and the influence of the TME: CSC plasticity refers 
to the ability of cancer cells to transition between stem-like and non-
stem-like states, which is influenced by signals from the TME. For 
instance, EMT-inducing factors, such as TGF-β and Wnt signaling, can 
promote the conversion of non-CSCs into CSCs, thereby replenishing 
the CSC pool. This plasticity enables tumors to maintain a supply of 
CSCs even after targeted therapies, contributing to tumor relapse and 
metastasis.

Conclusion
The tumor microenvironment (TME) exerts a profound influence 

on the behavior, survival, and therapeutic resistance of cancer stem 
cells (CSCs). Through complex interactions with components such as 
hypoxia, immune cells, the extracellular matrix, and stromal cells, the 
TME not only nurtures CSCs but also enhances their stemness, plasticity, 
and ability to evade treatment. These dynamic interactions create a 
protective niche for CSCs, facilitating their role in tumor progression, 
metastasis, and recurrence. Understanding the mechanisms by which 
the TME sustains CSCs provides valuable insights into potential 
therapeutic interventions. Targeting the TME, alongside CSCs, holds 
promise in overcoming therapy resistance and improving long-term 
cancer outcomes. This approach, focused on disrupting the supportive 
environment of CSCs, could be pivotal in reducing tumor relapse and 
providing more effective cancer therapies.
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