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Abstract

RUNX2 was an essential for osteoblast differentiation and bone development. In our study, rat adipose-derived
stem cells (ADSCs) were isolated from fat pads of abdomen and inguinal, and then purified and expanded in vitro.
RUNX2 gene was over-expressed using lentivirus tools to induce the rat ADSCs differentiated into osteoblasts. The
result shown that the transcription factors, RUNX2 could stable express in rat ADSCs and promote the directly
osteoblasts differentiation of rat ADSCs. Western blotting assays revealed the up-regulation of osteoblast-related
genes after osteoblastic differentiation of rat ADSCs. This study provides a theoretical basis and experimental
evidence for the application of ADSCs into treatment of bone injury.
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Introduction
The transcription factors, RUNX2 (Cbfa1/AML3/Pebp-2 A), a

member of the Runt domain family, binds specific factors to regulate
transcription of numerous genes and thereby control osteoblast
differentiation from bone-marry mesenchymal stem cells [23]. Runx2
is also required for mesenchymal condensation, chondrocyte
hypertrophy and vascular invasion of developing skeletons [12,18].
RUNX2 can directly stimulate transcription of osteoblast-related genes
such as osteocalcin (OCN), collagen I, osteopontin (OPN) and
collagen Ⅲ [5,9,24]. White adipose tissue has the ability to
dynamically expand and shrink, like bone-marrow, adipose tissue is a
mesodermally-derived organ that contains a stromal population
containing endothelial progenitor cells, smooth muscle cells and
mesenchymal stem cells [29]. So, adipose tissue have MSC-like cells,
which can differentiated into bone, fat, muscle, and cartilage cells
[2,16,20]. It has been reported that MSC derived from adipose tissues
have similar characteristics of BMSCs [13]. Adipose-derived stem cells
can differentiate along several lineages, including the osteogenic
lineage, in response to stimulation by multiple environmental factors
[3,7,27] and they involve complex pathways regulated at
transcriptional levels. However, the regulation of these cellular
pathways is not fully understood. Although Runx2 is expressed
exclusively in mineralized tissues and their precursors, in many cases
there is a poor correlation between actual Runx2 mRNA or protein
levels and the expression of osteoblast-related genes. In this study, we
focus on the RUNX2 gene regulation and the relationship of RUNX2
and other osteoblast-related genes in osteoblasts differentiation of rat
ADSC.

Materials and Methods

Isolation and culture of ADSCs

Adipose tissues were separated from fat pads of rat abdomen and
inguinal. All operations were finished under sterility condition. The
adipose tissues were washed 3 times with phosphate buffer saline
(PBS) containing 104 IU/mL penicillin/streptomycin to remove
connective tissue membrane and capillaries. The tissues were chopped
into small pieces (about 1 mm3) and digested with 0.1% (m/v)
typeⅠcollagenase (Sigma, USA) at 37°C for 1 h. Enzymatic digestion
was then neutralized with fetal bovine serum (FBS, Gibco, USA). The
suspension was filtered with an 80-μm Cell Strainer and centrifuged at
300 g for 5 min at room temperature. Then the supernatant was
discarded and the cells were re-suspended with a complete medium
containing L-DMEM+10% FBS. The cell suspension was plated and
incubated at 37°C with 5% CO2. The culture medium was changed
every three days and the non-adherent cells were removed. When the
cells reached 70-80% confluence, then 0.25% trypsin and 0.02% EDTA
(Gibco, USA) were added to dissociate the cells from plates, and
trypsinization was terminated with the complete medium. The cells
were subcultured in new plates and incubated at 37ᵒC with 5% CO2.

Immunofluorescence for ADSCs surface antigen
Surface antigen of rat ADSCs from different passages were detected

by immunofluorescence (IF) staining. The ADSCs were fixed in 4%
paraformaldehyde for 20 min, then blocked for 15 min with methanol
containing 0.1% Triton X-100, and then incubated in a goat serum
working solution for 30 min to block nonspecific binding. The ADSCs
were then incubated at room temperature for 1 h with primary
antibodies including CD29, CD44, CD71, CD73, CD90, CD105, CD31
and STRO-1. The ADSCs were incubated with secondary antibodies
conjugated with FITC (goat anti-mouse IgG and goat anti-rat IgG,
Boster, China). For negative control, PBS was used to replace the
primary antibodies. Finally, nuclei were labeled by incubation with 4, 6

Cellular and Molecular Biology Chengdong Hu, et al., Cell Mol Biol 2014, 60:3 

Research Article Open Access

Cell Mol Biol
ISSN:1165-158X CMB, an open access journal

Volume 60 • Issue 3 • 1000113

C
el

lul
ar 

and Molecular Biology

ISSN: 1165-158X

mailto:huchengdonghandan@126.com


diamidino-2-phenylindole (DAPI) (Sigma, USA). The cells were
examined by a phase contrast fluorescence microscope (Olympus,
Japan).

Expression of RUNX2 by recombinant lentivirus
Recombinant lentiviruses were generated by using Lentivirus-

delivered technology [22].The coding regions of RUNX2 was PCR-
amplified using primer “F: 5' CCAGATGGGACTGTGGTTACC3'”
“R:5'ACTTGGTGCAGAGTTCAGGG3'” and cloned into a lentivirus
vector and then used to recombine lentivirus in HEK293T cells. The
resulting lentiviruses designated as pLV/RUNX2/eGFP also express
GFP as a marker for monitoring infection efficiency. Analogous
lentivirus only expressing monomeric GFP was used as a control.

Osteogenic differentiation and transfection
The rat ADSCs were washed with PBS for 3 times. Then, DMEM

medium containing 0.5nmol/L FGF-2 and 100 μg/L BMP-2
(Peprotech, US) was added to the factor-induced group (group A)
[15,21,26]. The ADSCs at exponential growth were transfected by
pLV/RUNX2/eGFP or eGFP (group B). 72 hours after transfection, the
cells were selected and tested by western blotting. Or ADSCs were
treated with 0.5nmol/L FGF-2 and 100 μg/L BMP-2 after RUNX2
transfection (group C). One week later, the cells were detected for the
formation of calcium node using Alizarin Red staining, and the
expression of osteoblasts specific genes via Western blot assay. ALP
activity was assessed by colorimetric assay (using p-nitrophenyl
phosphate as a substrate) and/or histochemical staining assay (using a
mixture of 0.1 mg/ml napthol AS-MX phosphate and 0.6 mg/ml Fast
BlueBB salt) [4,8].

Results

Morphological observation and surface antigen
characteristics of rat ADSCs

Rat ADSCs were large, lucent and with strong refraction. The non-
adherent cells were removed on the third day and ADSCs were
fusiform and showed cell-like clone with growth being slower. Three
days later, ADSCs proliferated rapidly. We observed a delayed
outgrowth of exponentially growing populations of cells with spindle-
shaped morphology. Immunoflourescence staining results showed that
different passages of rat ADSCs expressed antigens CD13, CD44,
CD29, CD71, CD73, CD90 and CD105, but did not express antigens
CD31. CD31 antigen is special marker of endothelial cells. There was
no significant difference in the positive rates of different passages
(P>0.05) (Figure 1).

Alizarin Red staining and induce alkaline phosphatase (ALP)
activity assay

The rat ADSCs were plated to 24-well plates for osteogenic
differentiation. After the transfection of RUNX2, rat ADSCs had
expression of GFP and significant changes in appearance (Figure 2A).
Alizarin red staining of rat ADSCs was positive at one week after
inducing. The positive region was brightly red, showing clear calcium
nodules (Figure 2B), while the control was negative. Although the
exact mechanisms remain to be fully delineated, RUNX2 is shown to
regulate the osteogenic differentiation during skeletal development. As

shown in Figure 2C, overexpression of RUNX2 was shown to
effectively induce ALP activity in rat ADSCs.

Figure 1: Surface antigen characteristics of rat ADSCs at different
passages. Immunoflourescence staining results showed that rat
ADSCs at different passages expressed antigens CD29, CD44,
CD71, CD73, CD90, CD105 and STRO-1, but not antigens CD31.

Figure 2: RUNX2 overexpression and Osteogenic differentiation of
rat ADSCs. A: Transfection of RUNX2 after 48 h for Osteogenic
differentiation. B: After incubation in osteogenic differentiation for
one week, the cells metamorphosed from fusiform to
tridimensional shapes and the nodules increased in number and
size with prolonged inducing time. The nodules were obviously
observed following Alizarin Red staining. (bar=50 µm). C:
Detection of ALP concentration after Osteogenic differentiation.
The ALP concentration assay of medium showed that ALP
concentration increased with induced time extension. Group C is
significantly different (P<0.05) then other groups.

Western blotting of osteoblast-related genes
Cellular total protein of three groups was extracted after one week

of osteogenic induction respectively, and western blot were performed
osteoblast-related genes, such as OCN, collagen I, OPN and collagen
Ⅲ. Western blotting assay indicated that the osteoblast-related genes,
OCN, collagen I, OPN and collagen Ⅲ increased protein expression
level after osteogenic induction. However, the protein level of
osteoblast-related genes had significant difference in three groups
(Figure 3); the protein level of group C was highest in our research.

Discussion
Cell therapy has emerged as a strategy for the treatment of diseases,

especially bone injury and repair. Adult stem cells were currently
tentatively expanded and orientationally induced in vitro to seed cells
that are needed, which are then implanted into patients to repair
damage, to replace regressive tissue and improve the function of
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hereditarily defective tissue. It was reported that ADSCs could be used
to repair and reconstruct some tissues such as bone cartilage, lung,
brain, liver, etc. [6,10,17]. At present, the number of ADSCs is not
enough for tissue engineering. Accordingly, it is necessary to expand
and purify ADSCs in vitro. The rat ADSCs were successfully isolated
and expanded in vitro in our research, and the surface antigen
characteristics of rat ADSCs were expressed CD13, CD44, CD29,
CD71, CD73, CD90 and CD105 using immunoflourescence staining.
It was reported that BMMSCs could be used to repair and reconstruct
some tissues such as bone cartilage, lung, brain, liver, etc.
[14,19,25,28]. RUNX2 is a transcription factor that belongs to the
RUNX family [12]. RUNX2-deficient (RUNX2-/-) mice completely
lack bone formation owing to the absence of osteoblasts [11,18].
RUNX2 determines the osteoblast lineage from mesenchymal stem
cells, induces osteoblastic differentiation at the early stage. Further,
RUNX2 has been shown to ALP activity, expression of bone matrix
protein genes, and mineralization in immature mesenchymal cells and
osteoblastic cells in vitro [1]. RUNX2 regulates the expression of
several osteoblastic genes including collagen I, OPN, bone sialoprotein
and the skeletal-specific osteocalcin gene. The binding of nuclear
RUNX2 to osteoblast-specific elements up-regulates skeletal genes and
consequently the osteoblast phenotype. In our research, the RUNX2
were overexpressed using lentivirus tools in rat ADSCs, the osteoblast-
related genes were expressed after RUNX2 transfection. However, the
osteoblast-related genes expression level of group B (only RUNX2
expression) was lowest then other groups. The group C (RUNX2
expression added factors) was an effective method for osteoblastic
differentiation from rat ADSCs.

Figure 3: Western blotting analysis of osteoblast-related genes after
incubation in osteogenic differentiation for one week.

Conclusion
In this study, rat ADSCs were isolated from adipose tissues, and

investigated their morphology and antigen expression. We also

induced the rat ADSCs to differentiate into osteoblasts, which proved
that RUNX2 control osteoblasts differentiation. The present study has
important bearing on the potential application of ADSCs as an adult
stem cell source for regenerative therapies.
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