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Introduction 
Implant material used for high load bearing bones such as 

femoral and tibia bones should possess good bone bonding ability 
and high fracture toughness [1,2]. But the available bio-ceramics 
and biocompatible metals neither fulfill the both requirements. The 
ceramics has low fracture toughness than human cortical bone and no 
metal has the ability to directly bond with living bone [3]. So coating 
of bioactive materials such as hydroxyapatite [(Ca10(PO4)6(OH)2), HA] 
and calcium phosphate [Ca3(PO4)2, CaP] on the metals like titanium and 
biological steel was proposed as the well-known technique to enhance 
the bone-bonding ability of metals [4,5]. Furlong and Osborn [6] who 
were the first to perform the clinical trials of HA-coated implants had 
reported that HA coatings can successfully enhance clinical success. 
Delecrin et al. [7] had reported that Calcium phosphate (CaP) coatings 
promote early bone apposition at the surface of cementless orthopedic 
prostheses and had given well successful clinical results [8-14].

Titanium (Ti) is commonly used for developing orthopedic and 
dental implant under load bearing applications. But the high stiffness 
of titanium in comparison of surrounding bone can leads to the 
problem of stress shielding and subsequent loosening at the bone–
implant interface [15]. In the last many years, continuous research on 
HA and CaP have not only focused on tissue-coating interface, but also 
on the problems associated with the coating process and optimization 
of coating properties for maximum tissue response [16].

There are numerous experimental deposition processes such as 
thermal spraying [17-22], sputter coating [23-25], pulsed laser ablation 
[26-29], dynamic mixing [30], dip coating [31-33], sol–gel [34-37], 
electrophoretic deposition [38-44], biomimetic coating [45,46], and hot 
isostatic pressing [47]. Plasma spray process is the most commercially, 
well preferred technique to deposit HA on metallic implants because of 
high deposition rate and a sufficiently low cost [48-51]. 

In this work, Atmospheric Plasma Spray technique was employed 
to spray HA - CaP coatings on Titanium substrate. The as-sprayed 
coatings were characterized by X-ray diffraction (XRD), scanning 
electron microscopy (SEM) and energy-dispersive X-ray spectroscopy 
(EDX) techniques. Subsequently corrosion behavior of plasma sprayed 

HA and HA - CaP coatings on titanium has been investigated by the 
Tafel extrapolation method in simulated body fluid (Ringer’s solution). 
The changes in the crystallinity and morphology if any of the exposed 
samples were analyzed by XRD, SEM and EDX. This study is focused 
on the effects of adding CaP in HA on the corrosion resistance of HA 
- CaP coatings.

Experimental Procedure
Materials

Medical grade HA and CaP powders (IFGL Bio Ceramics Limited, 
Kolkata, India) with particle size distribution of 57-200 µm and 90-300 
µm respectively were used as spraying materials. Titanium substrate 
of size 15 × 15 × 3 mm was plasma sprayed with HA and HA – CaP 
coatings. The substrate surface was grit blasted with alumina of particle 
size 50-60 µm at a pressure of 5 bars for 2 minutes to roughen the 
surface and subsequently air blasted to remove any residual grit before 
spraying. Because a highly roughened substrate surface exhibited 
higher bond strength as compared to a smooth substrate surface [52].

Developments of coatings

The mixture of HA and CaP powders were prepared by mechanically 
stirring the mixture of HA + 10 wt% CaP and HA + 20 wt% CaP powders 
in a ceramic pot for 30 min. The titanium substrates were coated with 
following powders compositions: HA, HA + 10 wt% CaP and HA + 20 
wt% CaP using Plasma spray (Miller Spray System) at Anod Plasma, 
Kanpur, India. Hydrogen and argon were used as the fuel and powder 
carrier gas respectively. The spraying parameters for all the coating are 
identical and are listed in Table 1.
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Abstract
The aim of this work was to evaluate the corrosion behavior of the uncoated and coated titanium (Ti) and study 

the effect of calcium phosphate (CaP) on corrosion behavior of hydroxyapatite (HA) coatings in simulated body fluid 
(Ringer’s solution). Three types of coatings: HA, HA + 10 wt% CaP, and HA + 20 wt% CaP on titanium were made 
using plasma-spraying technique. Structural characterization techniques including X-ray diffraction and scanning 
electron microscopy/energy dispersive X-ray spectroscopy were used to investigate the crystallinity, microstructure 
and morphology and of the coatings. Electrochemical potentiodynamic test were performed to determine the corrosion 
resistance of uncoated and all three coatings in Ringer’s solution. The corrosion resistance of plasma sprayed HA 
coating on titanium was found maximum.
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Characterization of coatings

The phase structure of the feedstock powder and coatings were 
analyzed by XPERT-PRO X-ray diffractometer system. In the phase 
analysis, the radiation source was Cu Kα; the operating generator 
setting was 45 kV / 40 mA. The feedstock powder and coated samples 
were scanned over the 2θ range of 10° to 60° and 20° to 60° respectively. 

Microstructural investigation was carried out on the surfaces and 
polished cross-sections of the coatings by SEM (EVO MA 15 ZEISS) 
coupled with EDX. As-sprayed coatings were cut with a low speed 
precision saw and mounted in hot resin using a hot mounting press, 
followed by polishing with emery papers of 220, 320, 400, 600, 800, 
1000, and 2000 grades, and finally mirror finished by buffing using 
an alumina slurry solution on napped cloth. To achieve the desired 
conductivity for observation in SEM the gold sputter coating were 
applied to samples using JEOL JFC-1600 auto fine coater. Elemental 
analysis of the coatings was carried out using an EDX. EDX analysis was 
used to calculate Ca/P ratio and to display the distribution of elements 
in the coatings.

Surface roughness

Roughness parameters such as Ra (the arithmetic mean of the 
departures of the roughness profile from the mean line), Rq (root mean 
square (RMS) of average roughness), and Rz (average of the highest 
peaks and the lowest valleys) are measured at five different positions 
on the surface of the uncoated, HA, HA +10 wt% CaP and HA + 20 
wt% CaP coated titanium specimen by using a roughness tester (SJ-201 
MITUTOYO), with a filter of Gaussian type for a cut-off wavelength 
of 0.8 mm. The average value of each parameter at various positions is 
reported in this work.

Electrochemical corrosion studies

The electrochemical corrosion behavior of the uncoated, HA, 
HA + 10 wt% CaP and HA + 20 wt% CaP coated titanium specimens 
were investigated by conducting the potentiodynamic polarization 
tests. Potentiostat/Galvanostat (Series G-750; Gamry Instruments, 
Inc. USA), interfaced with a personal computer having specific 
Gamry electrochemical software ‘DC105’ was used to conduct the 
test. Ringer’s solution (Nice Chemical Pvt. Ltd. Cochin, India) with 
chemical composition (in g/L) as 9 NaCl, 0.24 CaCl2, 0.43 KCl, and 0.2 
NaHCO3 at pH 7.2 was used as the electrolyte for simulating human 
body fluid conditions. The titanium specimen and saturated calomel 
electrode (SCE) were used as working electrode and reference electrode 
respectively. A graphite rod was used as the counter electrode. The 
instrument measures and controls the potential difference between a 
non-current carrying reference electrode and one of the two current 
carrying electrodes (the working electrode). The parameters for 
conducting the potentiodynamic scan for calculating the corrosion rate 
by plotting the Tafel plot are mentioned in Table 2. The initial delay of 
24 hour is given for the stabilization of immersed specimen in Ringer’s 
solution and fresh solution was used for each experiment. 

Results and Discussions
XRD analysis

The XRD pattern of HA powder (Figure 1 (a)) and CaP powder 
(Figure 1 (b)) were composed of crystalline phases and all major peaks 
belongs to HA and CaP match the JCPDS cards 74-566 and 70-364 
respectively. Figure 2 shows XRD patterns of plasma sprayed HA (a), 
HA + 10 wt% CaP (b), and HA + 20 wt% CaP (c) coating on titanium 
were crystalline. The rise in peaks of HA + 10 wt% CaP and HA + 20 
wt% CaP has been noticed in the range of 200 2θ to 250 2θ because 
the CaP powder has sharp peaks between this range as compare to HA 
powder. The rise in peaks is significant in the range of 300 2θ to 350 2θ 
in HA + 20 wt% CaP coating.

SEM / EDX analysis

Surface analysis: The morphology of HA and CaP powders (Figure 
3) confirm that the HA powder has the spherical shape and CaP powder 
has the irregular shape with sharp edges. SEM micrograph of plasma 
spray HA coating (Figure 4 (a)) shows the microstructure consist of 
fully molten HA particles and appear denser. The EDX analysis shows 
the presence of Ca, P and O, which are main components of HA 
powder at three different positions. The average value of Ca/P ratio of 
the coating is 1.7 which lies in between the guidelines described by the 
Food and Drug Administarion and in the ISO standards [16,53,54]. 
The SEM micrograph of HA + 10 wt% CaP coating surfaces (Figure 4 
(b)) shows that microstructure consist of pores / voids and unsmooth. 
As the quantity of irregular shape particles of CaP increases in HA + 
20 wt% CaP coating increases the smoothness decreases and pores / 
voids appear as shown in Figure 4 (c). It is generally believed that if the 
density of coating surface is higher than the corrosion resistance of the 
surface increase.

Cross-Sectional analysis: The morphology of the plasma sprayed 
HA, HA + 10 wt% CaP and HA + 20 wt% CaP coatings on titanium 
at the cross-section is investigated by SEM and EDX and is shown in 
Figure 5. The thickness of coatings was measured at four positions 
and100 ± 20 µm was the average thickness. All the coating shows good 
bond with the substrate. The EDX analysis showed peaks of calcium 
and phosphors increases as the content of CaP in HA increased. 
The increase in proportion of CaP promotes the osteoconduction 
while HA particles carry the biological apatite precipitation [55]. 
It has been reported in literature that high soluble coating are more 
osteoconductive and bioactive in comparison to the stable layers in vivo 
[56]. The osteointegration of CaP coatings is faster than HA coatings in 
non – load bearing conditions [7].

Surface roughness

Surface roughness, surface topography, surface energy and 
chemical composition have been reported as very important factors for 
implant tissue interaction and to affect the biocompatibility in clinical 
use [57,58]. High surface roughness will increase the coating and 
body-fluid interface, and thus increase the dissolution rate and apatite 
precipitation [16].

Spraying Parameter Value
Arc Current 500 [Amp]
Arc Voltage 50 [V]

Argon Flow Rate 5 [slpm]
Hydrogen Flow Rate 12 [slpm]
Spraying Distance 75 [mm]
Powder Flow Rate 20-25 [g/min]

Table 1: Spraying Parameters for HA, HA + 10 wt% CaP and HA + 20wt% CaP 
Coatings.

Parameter Value
Initial Potential 0.25 [V Vs Open Circuit Potential]
Final Potential - 0.25 [V Vs Open Circuit Potential]

Scan Rate 1 [mV/s]
Sample area in Ringer Solution 1 [cm2]

Table 2: Parameters for conducting the potentiodynamic scan.
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substrates are shown in Figure 6. The average surface roughness (Ra) 
value for uncoated, HA, HA + 10 wt% CaP and HA + 20 wt% CaP 
plasma coated titanium substrates are 0.934 ± 0.2 µm, 5.874 ± 0.4 µm, 
6.462 ± 0.3 µm and 7.624 ± 0.4 µm respectively. Gross and Babovic [59] 
reported that plasma sprayed HA coating with a powder particle size of 

Figure 1: X-ray diffraction patterns of (a) HA powder (b) CaP powder.

Figure 2: X-ray diffraction pattern of (a) HA, (b) HA + 10 wt% CaP and (c) 
HA + 20 wt% CaP coatings on titanium.

Figure 3: SEM micrograph of (a) HA powder (b) CaP powder.

The surface roughness parameters (Ra, Rq and Rz) for uncoated, 
HA, HA + 10 wt% CaP and HA + 20 wt% CaP plasma coated titanium 

Figure 4: SEM micrograph and EDX Analysis of Plasma Sprayed (a) HA (b) 
HA + 10 wt% CaP and (c) HA + 20 wt% CaP coatings on titanium.

Figure 5: SEM and EDX along the cross-section of Plasma Sprayed (a) HA 
(b) HA + 10 wt% CaP and (c) HA + 20 wt% CaP coatings on titanium (S, C, E, 
represents the Substrate, Coating and Epoxy respectively).
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20-30 µm give a surface roughness of 4-6 µm while incorporating the 
partially melted particles but the particles size is coarse in this work. 
The un-melted particles produce rough areas within and on the surface 
of the coating. Crystalline particles spread over the coating surface 
when the un-molten particle core is not sufficiently strong to fragment 
upon impact with the substrate [59]. The smooth areas in the coating 
are the result of melting of the powder.

Corrosion behavior

The potentiodynamic scan of the uncoated, plasma sprayed HA, HA 
+ 10 wt% CaP and HA + 20 wt% CaP coating on titanium samples in 
Ringer’s solution is shown in Figure 7. The corrosion parameters such 
as anodic tafel slope (βa), cathodic tafel slope (βc), corrosion potential 
(ECorr), and corrosion current density (ICorr) are determined from the 
potentiodynamic curves by conducting the Tafel extrapolation test.

The results of these corrosion parameters are shown in Table 3. The 
chance of corrosion in a material depends upon the corrosion current 
density (ICorr) at a given potential, material will be more corrosion 
resistant at lower value of ICorr [60-62].

The result of Tafel slope values shows that corrosion current density 

of uncoated sample in Ringer’s solution is (ICorr = 2.28 µA, ECorr = -152.0 
mV) higher than the plasma sprayed HA (ICorr = 1.6 µA, ECorr = -113 
mV), HA +10 wt% CaP (ICorr = 1.810 µA, ECorr = -63.0 mV) and HA +20 
wt% CaP (ICorr = 2.01 µA, ECorr = -37.90 mV) coated titanium sample. 
The earlier corrosion studies on HA coatings shows the same kind of 
results [63-66]. So the analysis of Tafel slope values indicates that the 
plasma coated HA titanium specimen with lowest ICorr values is the most 
corrosion resistant specimen among the uncoated, HA + 10 wt% CaP 
and HA + 20 wt% CaP coated titanium specimens in Ringer’s solution. 
The results also suggest that the increase percentage of CaP in HA also 
decreases the corrosion resistance of plasma coated titanium. 

The XRD peaks of HA, HA + 10 wt% CaP and HA + 20 wt% 
CaP coated titanium (Figure 8) appears more crystalline after 
electrochemical corrosion testing and the intensity of XRD peaks 
found to be increased after immersion of samples in Ringer’s solution 
for 24 hours during corrosion testing. The sharp peaks after immersion 
indicates the dissolution of the amorphous phases [63]. It is reported 
that amorphous phases are more soluble then crystalline HA as they 
encourage the early bone growth [67]. The dissolution was favorable 
for the early stages of transformation of biological equivalents that 
act as mediator between osteoclast and osteoblast differentiation [68]. 
The higher crystalline coating leads to longer implant life, while some 
implant manufacture prefer a faster dissolving coating to enhance the 
bone growth [69]. It has been reported in in vivo studies that the phase 
purity, crystallinity and microstructure of HA coatings affects the 
biological response of HA coating [70].

After electrochemical corrosion testing, the compositional changes, 
if any, on the surfaces of the exposed specimens were further examined 
by SEM and EDX. The surface morphology of the HA coated samples 
(Figure 9 (a)) changes to flattened particles and looks smooth and 
denser after exposure to the corrosion testing in Ringer’s solution. 

The morphology of HA - CaP coatings (Figure 9 (b-c)) appears to 
be more porous and less smooth after 24 hour immersion in Ringer’s 
solution for corrosion testing. The size of pores and void appear to be 
increased. The micrograph of HA + 20 wt% CaP coating shows the 
dissolution of the coating. No cracks were found on both the Ha and 
HA - CaP coated exposed specimens.

EDX analysis confirms the presence of Ca, P and O elements in 
all HA and HA - CaP coatings. EDX analyses of exposed specimens 
shows that Ca and P (at %) decreases by taking the average of 
elemental composition at three spectrums after 24 hour immersion 
in ringer solution. The decrease in the values indicates that phosphate 
accumulate on the surface which suggests that incongruent dissolution 
of the HA has taken place [63]. No constituent of substrate i.e. titanium 
found on the surface of any coatings of the exposed samples.

Conclusion
In the present study, plasma spray technique was used to deposit 

the HA, HA + 10 wt% CaP and HA + 20 wt% CaP on titanium. The 
following conclusions have been drawn from the study:

Figure 6: Surface roughness measurements for the Uncoated, plasma spray 
HA, HA+ 10 wt% CaP and HA + 20 wt% CaP coated titanium substrate

Figure 7: Potentiodynamic curves of (a) Uncoated (b) Plasma sprayed HA (c) 
Plasma sprayed HA + 10 wt% CaP (d) Plasma sprayed HA + 20 wt% CaP on 
titanium in Ringer’s Solution.

Parameter Uncoated HA Coated HA + 10 wt% 
CaP Coated

HA + 20 wt% 
CaP Coated

βa  [e-3 V/decade] 64.90 104.1 115.0 136.0
βc [e-3 V/decade] 286.3 743.3 114.8 385.6

ECorr [mV] -152.0 -113.0 -63.0 -37.90
ICorr [µA] 2.28 1.6 1.810 2.01 

Table 3: Corrosion parameters determined by the Tafel extrapolation test.
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and HA + 20 wt% CaP coated titanium and a complete interpretation 
of these results can help in assessing their use in clinical applications.
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1. The plasma sprayed HA + 20 wt% CaP coating is more crystalline 
than HA and HA + 10 wt% CaP Coating on titanium.

2. The plasma sprayed HA + 20 wt% CaP coating exhibited higher 
surface roughness (Ra = 7.624 ± 0.4 µm) than HA and HA + 10 
wt% CaP Coating on titanium.

3. The electrochemical study showed the corrosion resistance of the 
titanium is more after the deposition of plasma sprayed HA than 
uncoated, HA, HA + 10 wt% CaP and HA + 20 wt% CaP coatings 
on titanium.

Future in vivo studies of plasma sprayed HA, HA + 10 wt% CaP 

Figure 8: X-ray diffraction pattern of (a) HA (b) HA + 10 wt% CaP and (c) HA 
+ 20 wt% CaP coatings on titanium after corrosion testing in Ringer’s solution.

Figure 9: SEM and EDX of Plasma Sprayed (a) HA, (b) HA + 10 wt% CaP and 
(c) HA + 20 wt% CaP coatings on titanium after dipping in Ringer’s solution.
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