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Abstract

Greater sage-grouse (GSG; Centrocercus urophasianus) selectively utilize portions of sagebrush and sagebrush
associated habitats within broad and heterogeneous landscapes. Until recently, sage-grouse research has generally
focused on fine-scale vegetation structure and composition and less on landscape-scale habitat requirements.
Insufficient information at broad scales limits a manager’s ability to interpret and predict habitat use patterns, assess
habitat suitability, and target areas for conservation and ecological rehabilitation. We identified environmental
attributes associated with GSG habitat use at broad spatial scales. In 2006, we captured 50 GSG, radio-collared
each bird, and tracked each bird’s position within a 31,416 ha study area in central Oregon, USA. We monitored
birds year-long between March 2006 and March 2008 across the study area. Each time a bird was located, we
collected a coordinate position at the point where it was observed. We generated spatially explicit predictor variables
in a Geographic Information System to quantify the association between landscape structure and GSG occurrence.
Predictor variables included elevation, slope, aspect, curvature, solar radiation, landscape ruggedness, orientation,
distance from roads, distance from leks, distance from mesic habitats, and cover type. We used spatial modeling
(Maximum Entropy) to 1) develop predictive models of GSG seasonal resource use, 2) generate probability maps for
visual assessment, and 3) characterize response curves associated with GSG habitat preference based on
individual landscape predictor variables. Results indicate that during the breeding season GSG will use big
sagebrush, low sagebrush or complexes of low and mountain big sagebrush cover types. During the summer
season, GSG use low sagebrush, mountain big sagebrush, and mesic areas. Additionally, summer season use
areas include higher elevation sites within or in close proximity to habitats that sustain succulent forbs throughout
most of the growing season. Maps of modeled data identify spatially explicit areas of preferred habitat and predicted
bird use patterns. This information can help managers identify and protect important GSG habitat across
heterogeneous landscapes.
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Introduction
Greater sage-grouse (GSG; Centrocercus urophasianus) habitat

research has focused primarily on fine-scale (0.007 - 0.032 ha)
vegetation structure and composition immediately surrounding sites
where birds have been observed. This research has been instrumental
in explaining the vegetative components necessary for GSG survival
and reproduction [1-5]. However, GSG utilize broad landscapes where
land management agencies have responsibility of making decisions and
planning conservation strategies that are relevant at the landscape-
level [6-7]. There is often insufficient information about GSG habitat

requirements that can be accounted for at the landscape-level, limiting
a manager’s ability to interpret and predict habitat use patterns, assess
habitat suitability in meaningful locations (i.e., versus random
locations), and target areas for conservation and ecological restoration
across broad heterogeneous landscapes.

Greater sage-grouse select habitat at multiple spatial scales with
home ranges that can exceed 270,000 ha [8-10]. The ability of GSG to
move long distances allows them to utilize the spatial and temporal
variation in sagebrush and associated plant community resources [11].
This movement is often a display of complex selection patterns that
result from variation in the composition, structure, and arrangement
of sagebrush ecosystems. This heterogeneity in sagebrush communities
can create a challenge for managers as they identify manageable
features of GSG habitat that attract greater bird use and provide a
consistent supply of resources that meet the nutritional and safety
requirements of a sustainable population.

Similar to GSG, greater prairie chickens (Tympanuchus
pallidicinctus) display characteristic movement and habitat use
patterns throughout the year as nesting activity transitions to brood
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rearing. According to Fuhlendorf et al. [12], there is no single spatial
scale sufficient to characterize the influences of landscape structure on
greater prairie chicken habitat use. Instead, they emphasize the need
for research and management that covers multiple spatiotemporal
scales. Since GSG utilize resources across expansive and heterogeneous
landscapes, methods are needed that accurately identify the attributes
most closely associated with GSG habitat use patterns. Previous
research [13] has shown that GSG habitat can be modeled as a
function of landscape structure in an ecological niche modeling
framework using Maxent species distribution modeling software.
Ecological niche models (ENM) are a class of methods that use species
occurrence data and associated environmental conditions to 1)
estimate the relative suitability of habitat known to be occupied by the
species, 2) estimate the relative suitability of habitat in geographic
areas not known to be occupied by the species, 3) to estimate changes
in the suitability of habitat over time, and 4) estimate the actual niche
of a species [14]. The purpose of this research is to quantitatively
model and map breeding areas and suitable brood rearing habitat in a
sagebrush- (Artemisia tridentate Nutt.) dominated plant community of
central Oregon using a set of landscape-level attributes, GSG telemetry
locations, and Maxent species distribution modeling software.

Methods

Study area
The study area is located in Crook County of central Oregon (Figure

1) and supports a population of GSG that have been relatively stable
since 1987. Plant communities are characterized by Wyoming big
sagebrush (A. tridentata ssp. wyomingensis Beetle and Young) at lower
elevations and a complex of low sagebrush (A. arbuscula Nutt.) and
mountain big sagebrush (A. tridentata spp. Vaseyana (Rydb.) Beetle) at
higher elevations. Wet and dry meadows and riparian communities
occur in scattered patches throughout the region, accounting for <1%
of the landscape.

In the center of the study area is the largest of three adjoining leks
(119º53’ 22” W 43º48’ 31” N). During past breeding seasons
(1994-2008), this lek was visited by an average of 47 males (range
27-71). The spatial extent of the study area is represented by a circle
with a 10 km radius typical of post-lekking dispersal distances
described by Braun et al. [15] and Connelly et al. [8]. Similarly,
Aldridge and Boyce [16] found that 90% of all nesting and brood-
rearing habitats occurred within 10 km of a lek and Bruce et al. [17]
found that 85% of the collared birds remained within 10 km of the lek
during the breeding and summer seasons at this same study area.

The study area is composed of both private (55%) and public (45%)
lands. The public land is divided into lands managed by the Bureau of
Land Management (35%), the United States Forest Service (6%), and
the state of Oregon (4%). The geology and soils resemble the High
Desert and John Day Ecological provinces [18]. The topography is
characterized by elongated ridges with dissecting draws, rolling hills,
rocky tablelands, and interspersed with buttes and plateaus capped
with basalt or tuffaceous rock. Dominant soils are comprised of mesic
and frigid temperature and xeric moisture regimes that include
Argixerolls, Haploxerolls, Palexerolls, Haploxerents, and Durixerolls.
Elevation generally increases from west to east ranging from 1,267 m
to 1,715 m. Annual precipitation varies between 20-40 cm. Average
annual temperature is 7.5°C (range −29 to 38°C) and precipitation for
the water year (October 1 – September 30, 2007) was 59% of the long-
term average (EOARC weather station records 1971-2000).

Greater sage-grouse location data
We captured adult and subadult GSG from March 2006 through

March 2007 during the lekking period. Birds were opportunistically
located during nighttime hours using a spotlight powered by a Honda
350x backback generator. Once netted, each bird was gently handled
and fitted for a VHF collar as quickly and carefully as possible to
minimize stress. Each bird was fitted with a 22 g self-releasing collar.
Additional description of trapping and collaring methods are
described by Giesen et al. [19]. We trapped 30 male and 20 female
birds at six leks or roosting areas. Each bird was fitted with an
Advanced Telemetry Systems (ATS) radio transmitter for monitoring
its location after release using a portable antenna/receiver and GPS.
Each collared bird was located on average every 15 days (range 1-154
days). We recorded 250 location points during three breeding seasons
from March through June in 2006, February through June in 2007, and
February through March in 2008. We recorded 207 location points
during two early and late brood-rearing seasons from June through
October in 2006, and June through October in 2007). These seasons
represent temporal categories used to distinguish variability in the
amount and quality of habitat and resources (i.e., insect, forb and water
availability) required by GSG [8,20,21].

Analysis
Predictive Modeling with Maxent — We used maximum Entropy

(Maxent) to generate seasonal habitat suitability models and maps
using GSG locations and a set of landscape-level predictor variables.
For input MaxEnt uses a list of presence locations of a particular
species in combination with a set of environmental predictor variables
across a user-defined landscape represented as an array of grid cells.
From this landscape, predictor variable information is extracted from a
spatially diffuse sample of background locations, where presence is
unknown, and is contrasted against the predictor variable information
at presence locations. Thus, MaxEnt predicts the relative occurrence
rate of a species for any one grid cell as a function of the environmental
predictors. MaxEnt derives mathematical transformations of each
predictor (linear, quadratic, product, hinge, threshold), referred to as
features, that users can select from to generate complex, nonlinear
models using all features or simpler models with fewer features. Use of
the full set of feature types can lead to highly complex models and
overfitting depending on the sample size of the training data. For
example, use of the threshold feature requires a minimum of 80
training samples and can produce sharp jumps in response curves that
manifest in maps with odd discontinuities [22]. Categorical predictors
with n categories are split into n binary features, which take the value 1
when the feature is present and 0 otherwise.

To obtain a solution, MaxEnt maximizes a penalized maximum
likelihood function referred to as the gain. The exponentiated gain
function represents the likelihood ratio of an average presence to an
average background point. Maximizing the gain, therefore,
corresponds to finding a model that best differentiates presences from
background locations that are uniformly distributed across the study
area. The gain represents the sum of predicted values at presence
locations from which the log of the sum of predicted values at
background locations and an overfitting penalty are subtracted [23].
Gain is a measure of likelihood analogous to deviance in Generalized
Linear Models and can be interpreted as the degree of improvement in
the Maxent probability distribution fitting the sample points compared
to a uniform distribution. For example, if the gain is 1, the average
sample likelihood is exp (1) = 2.7 times higher than that of a random
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pixel. For the full mathematical description of the MaxEnt algorithm
readers should see Phillips et al. [24], Merow et al. [23], or Elith et al.
[25].

Predictor variables
A 10 m Digital Elevation Model (DEM) was used to generate raster

layers for the predictor variables elevation, ruggedness index, aspect,
slope, curvature, and hillshade, with the latter four of these generated
using the Surface tools available in the Spatial Analyst Toolbox of
ArcGIS®. The ruggedness index represents a measure of terrain
ruggedness derived from the variation in three-dimensional
orientation of grid cells within a specified neighborhood. This index
captures variability in slope and aspect into a single measure.
Ruggedness values in the output raster can range from 0 (no terrain
variation) to 1 (complete terrain variation). The ranges of terrain
values for the study area were typical values for natural terrains
between 0 and about 0.4 [26]. Aspect values were categorized as flat,
north (316° to 45°), east (46° to 135°), south (136° to 225°), and west
(226° to 315°). The curvature raster represents the convexity and
concavity of each cell based on the mean elevation of a 5 × 5 window
centered on the target cell and was created with the “curvature”
function. A positive curvature indicates the surface is upwardly convex
at that cell. A negative curvature indicates the surface is upwardly
concave at that cell. A value of 0 indicates the surface is flat. The slope
raster was derived using the “slope” function. The “hillshade” function
was used to generate the hypothetical solar illumination on each cell of
the raster. We compared the training gain produced with six values for
the highest altitude of the sun with the corresponding azimuth
associated with the first day of each month from January through July
but chose the default settings provided in the ArcGIS®. Hillshade tool
because it produced the highest training gain for both the breeding and
summer season datasets.

Figure 1: Greater sage-grouse location points for the breeding and
summer season within the 31,416 ha study area in central Oregon
(10 km radius boundary).

Vegetation cover types were delineated from 0.5 m National
Agriculture Imagery Program (NAIP) aerial color photographs and
attributed with data collected from field-based observations. GIS
polygons of each cover type were digitized within a 10 km radius (314
km2) centered at the site of highest courtship activity (Figure 1). The
accuracy assessment conducted to compare the actual vegetation type
to the predicted type from 40 randomly selected GIS locations
produced a “better than substantial” Kappa statistic of 0.89 [27]. This
analysis resulted in a GIS layer with 18 different field-sampled cover
types. For the purposes of generating Maxent models we wanted to
avoid the potential inflation of prediction values, therefore, cover types
comprising less than 1.5% of the study area were merged with the most
similar type (Figure 2). This integration resulted in a categorical
predictor variable with nine major vegetation cover types.

Figure 2: Amount of area for each of the major vegetation cover
types within the 10 km radius study area and numbers. Values in
parentheses above each bar represent the number of telemetry
locations occurring in that cover type during the breeding and
summer season, respectively. ARAR=Artemesia arbuscula,
JUOC=Juniperus occidentalis, ARTRVA=Artemesia tridentata var.
vaseyana, ARTRWY=Artemesia tridentata var. Wyomingensis,
CHNA/CHVI = Chrysothamnus nauseosus/Ch. Viscidiflorus,
PIPO = Pinus ponderosa.

A predictor variable representing the distance from roads was
generated by calculating the Euclidean distance of each raster cell from
digitized road features and another representing distance from streams
which include locations attributed as perennial streams, wet meadows,
and stock-pond/reservoirs.

Two variables representing east and north UTM coordinates were
created to compare the performance of models built with and without
location coordinates. While both types of models are useful for
predicting where a species might occur in unsampled areas, models
with location coordinates are useful for generating maps that
emphasize the spatial distribution of the presence data. Models without
coordinates are more useful for generating habitat suitability maps to
help explain why a species occurs where it does and how it responds to
the ecological and geophysical gradients represented with the predictor
variables.
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Model Development
The overall modeling objective was to build habitat suitability

models with high performance from the best subset of predictor
variables chosen for this analysis. We first generated a set of models
that included the north and east UTM predictor variables for depicting
the strongest spatial distribution of locations and evaluating the extent
of spatial autocorrelation. We generated another set of models without
spatial coordinates to identify which of the remaining variables were
most important in predicting suitable habitat.

Maxent’s machine learning approach of including all reasonable
predictors in a model and letting the algorithm decide which ones are
important via regularization can result in highly complex models even
with prescreening of correlated variables. Therefore, to produce
simpler models that have similar performance to more complex
models [23] we followed the method for selecting the best subset of
predictor variables used by Yost et al. [13]. The technique was found to
be simple, yet effective, to objectively determine which variables made
insignificant contributions to a model. Maxent's jackknife test of
variable importance can be used to evaluate the relative strengths of
each predictor variable. The training gain is calculated for each variable
alone and the drop in training gain when the variable is omitted from
the full model. The modeling process started with a full model
containing all predictor variables. Then, the variable with the lowest
decrease in the average training gain when omitted from the full model
was eliminated, and the remaining variables were used to build a
reduced model. This process was repeated until the average training
gain for the reduced model dropped significantly below the average
training gain for the full model or the model with the highest training
gain. Overlap between 95% confidence intervals for training gain
averages was the criteria for significance. Averages and confidence
intervals were estimated from 10 bootstrapped random replicates with
75% of the presence records used for model calibration and the
remaining 25% for testing.

Notwithstanding drawbacks reported by Lobo et al. [28] we used
Maxent’s calculation of the area under the receiver operating curve
(AUC) to report model accuracy and fit [29]. The AUC is an index
representing the model’s predictive accuracy that ranges in value from
0.5 to one. Models with AUC values >0.9 can be considered to have
excellent predictive ability, between 0.8 and 0.9 as good, 0.7 to 0.8 as
fair, 0.6 to 0.7 as poor and 0.5 to 0.6 represents failure or models that
don’t predict better than a random guess [30]. Model success was also
evaluated by visually inspecting how well the probability values in the
output grid fit with GSG location points. A good model will produce
regions of high probability that cover the majority of presence records
and areas of low probability should contain few to no presence points.

We used linear, product, and hinge features and selected the auto
features option. Default values were used for the Maxent algorithm to
approach convergence based on the maximum number of iterations
(1000), the convergence threshold of 10-5, the regularization multiplier
to 1.0, and prevalence to 0.5. Data were pooled across years and gender
for each season and multiple observations of birds at the same location
were treated as one data point (by selecting the Maxent option to
remove duplicate presence records) used for model building resulting
in a total of n = 168 (17 female, 26 male) for the breeding season and n
= 163 (16 female, 21 male) for the summer season. The number of
observations of individual birds throughout the study ranged from 1 to
17 with an average of 5.5 (± 1.3).

We used the lowest average prediction value from the Maxent
output that corresponded with the area adjusted frequency [31]
significantly greater than one to objectively reclassify the continuous
logistic output into a binary map of “suitable” and “unsuitable” habitat
classes [22]. The area-adjusted frequency, hereafter referred to as the
predicted to expected (P/E) ratio [32], was estimated by first
partitioning the range of corresponding logistic values from Maxent’s
omission output file into 91 classes (0.05 incremented by 0.01 to 0.95).
The prediction value for each class was estimated with linear
interpolation between a range of corresponding logistic values defined
by a width of W = 0.1 [31]. Computation started with a first class
covering the class values that ranged from [0,W]. The numerator of the
P/E ratio was the interpolation between the test omission value
antecedent to the one that corresponded with the lower boundary of
the computation width and the one that corresponded with the upper
boundary. The denominator was the interpolation between the
corresponding fractional area values. The P/E ratio was calculated for
each subsequent class that expanded with each increment up to a
width size of [W/2 – class value + W/2] and ended with a size of [1-W,
1]. The P/E ratios were then averaged across all replicate models, and
95% confidence intervals calculated. We considered the class
subsequent to the last class with a lower confidence limit that
overlapped the P/E = 1 as significant and used it as the map
reclassification value. If the habitat model properly delineates the
species suitable areas, a low suitability class should contain fewer
evaluation presences than expected by chance, resulting in P/E <1.
Conversely, high suitability classes should have P/E increasingly higher
than 1 [31,32].

Ethics statement
This study was carried out with strict accordance with the protocol

approved by the Oregon State University Institutional Animal Care
and Use Committee. A sage-grouse trapping/handling permit was
obtained from the Oregon Department of Fish and Game prior to
trapping efforts. Plant data was collected with permission provided by
the land owner and manager. The research did not involve federally or
state listed endangered species.

Results

Breeding season model
We removed the predictor variable for slope from the modeling

process because the correlation with the ruggedness index was greater
than 0.7 when included and it reduced the training gain less when
removed from the model. Similarly, elevation was also removed
because it was correlated (0.7) with East UTM and reduced the
training gain less when removed from the full model (Figure 3). The
average AUC value for the nine-variable model was 0.904 with an
average training gain of 1.25. The Jacknife test of variable importance
shows that the individual training gains for north UTM (0.403),
vegetation classification (0.4) and east UTM (0.39) were nearly the
same value and highest among the full set of predictor variables. The
UTM coordinates decreased the training gain the most when omitted
from the full model followed by the vegetation classification (Figure 3).
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Figure 3: Results from the jackknife test of variable importance for
the breeding and summer season data. The bar for “All variables”
represents training gain produced by the full models containing
north and east UTM. Black bars represent training gain produced
by a Maxent model containing only the corresponding predictor
variable. White bars represent the drop in training gain associated
with removing the corresponding predictor variable from the full
model. The drop in training gain for each variable, other than north
and east UTM, was produced by the model without these two
variables.

To simplify the full model and reduce the possibility of overfitting
we removed variables one at a time based on the least amount of

decrease in the average training gain when a particular variable was
omitted. There was overlap in 95% confidence intervals even though
the average training gain (in parentheses) varied through the removal
of curvature (1.25), aspect (1.34), hillshade (1.24), and distance from
roads (1.24). Training gain dropped (1.09) significantly and eliminated
the overlap in confidence intervals with the full model when
ruggedness index was removed. Therefore, the final model contained
the UTM coordinates, vegetation classification, distance from streams,
and the ruggedness index (Table 1).

The final model had excellent predictive ability with an average
AUC of 0.90, predicted areas used for breeding about 3.5 times better
than a random distribution, and was used to generate the distribution
map in Figure 4A. The reclassification procedure resulted in
designating prediction values greater than 0.41 (9.1% of the study area)
as suitable habitat and prediction values less than or equal to 0.41 as
unsuitable habitat.

Breeding season without UTM coordinates
The AUC for the full model without the UTM predictor variables

was 0.874 and the average training gain was 0.95. The predictor
variable for elevation was included in the full model because the
correlation with East UTM was no longer a factor. The jackknife test of
variable importance showed that the vegetation classification variable
had the highest average training gain (0.39) when used alone followed
by elevation (0.35). Conversely, elevation produced the largest drop in
training gain when removed from the full model followed by
vegetation. Training gain values among the other predictors were
considerably lower not exceeding 0.11.

There was overlap in the confidence intervals for the average
training gain with the full model through the removal of curvature
(0.96), aspect (0.99), hillshade (0.93), and distance from roads (0.85)
but with the removal of the ruggedness index (0.71) the drop in
average training gain was significant eliminating the overlap in
confidence intervals. The final model contained vegetation, elevation,
the ruggedness index, and distance from streams (Table 1). The AUC
value for the final model was 0.851. It predicted breeding habitat about
2.3 times better than a random distribution, and was used to generate
the map of breeding habitat (Figure 4B). The reclassification procedure
identified prediction values greater than 0.52 (9.1% of the study area)
as suitable habitat.

Breeding Season Summer Season

Model 1 Model 2 Model 1 Model 2

Training AUC 0.9 0.85 0.91 0.88

Test AUC 0.87 0.84 0.88 0.86

Training Gain 1.24 0.85 1.25 1

Test Gain 1.24 0.96 1.2 0.97

Predictor Variables North UTM Vegetation North UTM Elevation

East UTM Elevation East UTM Dist. Streams
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Vegetation Ruggedness Dist. Streams Vegetation

Dist. Streams Dist. Streams Dist. Roads Ruggedness

Ruggedness Dist. Roads

Table 1: Evaluation statistics and predictor variables comprising models with UTM coordinates (Model 1) and those without coordinates (Model
2) for the breeding and summer season datasets.

Summer season
The AUC for the full model without was 0.92 and the average

training gain was 1.38. The predictor variable for elevation was not
included in the full model because the correlation with East UTM. The
Jacknife test of variable importance shows that the individual training
gains for north UTM (0.43) and east UTM (0.54) were again the
highest among the set of predictor variables and lowered the average
training gain the most when removed from the full model. The next
highest training gain was associated with distance from streams (0.30)
followed by the vegetation classification (0.25).

There was overlap in the confidence intervals for the average
training gain with the full model through the removal of aspect (1.37),
curvature (1.35), vegetation classification (1.28), hillshade (1.33), and
the ruggedness index (1.25). The drop in average training gain with
removal of distance from roads (1.13) eliminated the overlap in
confidence intervals; therefore, the final model is comprised of north
and east UTM, distance from streams, and distance from roads (Table
1). The AUC for the final four-variable model was 0.911. It predicted
the distribution of summer GSG habitat about 3.5 times better than a
random distribution, and was used to generate the map in Figure 4C.
The reclassification procedure identified prediction values greater than
0.45 (11.3% of the study area) as suitable habitat.

Summer season without UTM coordinates
The AUC for the full model without north and east UTM was 0.89

and the average training gain was 1.08. The Jacknife test of variable
importance (Figure 2) shows that the individual training gains for
elevation (0.49), distance from streams (0.27), and vegetation
classification (0.25), were highest among the set of predictor variables.
Distance from streams lowered the average training gain the most
when removed from the full model followed by elevation and then
distance from roads.

Confidence intervals for the average training gain (0.99) with
removal of aspect did not overlap with those of the full model, did
overlap with the subsequent removal of hillshade (1.00), and finally did
not overlap with the removal of curvature (0.965) and the remaining
predictors. The training gain for the five-variable model containing
elevation, distance from streams, vegetation classification, ruggedness
index and distance from roads was chosen as the final model (Table 1),
because it was not significantly different from the seven or six-variable
models, hence it performed nearly same with fewer predictors. The
final model predicted the distribution of summer GSG habitat about
2.6 times better than a random distribution and was used to generate
the map in Figure 4D. The reclassification procedure identified
prediction values greater than 0.36 (19.9% of the study area) as suitable
habitat.

Response Curves
Response curves were generated to show how each predictor

variable affects the Maxent prediction for models created using only
the corresponding variable. These curves were also used to compare
differences between the curves produced with breeding and summer
season datasets for each predictor variable that entered one of the four
final models (Figure 5). Average prediction values produced by east
and north UTM from the breeding season data were symmetrically
peaked near the middle of the range of both variables as might be
expected given one location served as the center of the lek and the
study area and that GSG congregate around leks during this season
[8,21]. However, the peak was shifted to the right in the curve
produced with summer dataset for North UTM and the highest
prediction values were more spread out across east UTM.

Figure 4: Mapped representations of the final models with UTM
coordinates (A and C) and without coordinates (B and D). Green
colors represent areas receiving estimates with low prediction value
or low suitability and red colors represent areas receiving the
highest estimate of habitat suitability.
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Figure 5: Response curves depicting how the Maxent logistic
prediction (y-axis) varies across the range of values for each
predictor variable when used in a one-variable model. Solid lines
represent mean values and dashed lines (error bars for categorical
variables) 95% confidence intervals.

The pattern of prediction values across the vegetation categories
suggests GSG used habitat types relative to availability (Figures 2 and
5) during the breeding season except for the PIPO type in which no
birds were recorded. Nonetheless, the percentage of relocations (75%)
was disproportionately higher in the ARAR habitat type which
comprised 34% of study area. The summer season dataset prediction
values were notably higher for the mesic areas, ARAR/JUOC,
ARTRVA, and ARTRVA/JUOC categories, reflecting different habitat
utilization than during the breeding season. Maxent prediction values
during the breeding season increased rapidly from about 0.3 for areas
near streams and water sources, peaked at about 900 meters, and then
gradually decreased to 0.32 at the uppermost range of distance values.
The response curve produced with the summer dataset was
considerably different with the highest prediction values associated
with areas closest to streams followed by a steep curvilinear decrease in
value with increasing distance from streams.

The response curve produced by elevation during the breeding
season shows the highest prediction values peaked at mid-elevations of
the study area and were near zero at the lowest and highest elevations.
The summer dataset curve was similar except the peak was slightly
lower in value and flattened across a larger range of elevation.
Prediction values dropped as elevation increased but then jumped
sharply for areas of highest elevation without a corresponding increase
in frequency of GSG locations. This increase in the upper range of
elevation values was likely caused by two birds located above 1,683 m
elevation. Since the amount of area with at least this elevation
represented only 0.2 percent of the study area these two location points
likely inflated the habitat prediction values. The uncertainty in this
prediction region of the variable is also higher given the wider
confidence intervals.

Average prediction values were low for distances closest to roads but
increased rapidly up to 200 m after which they stabilized until 1500 m
when they steadily increased again with increasing distance. The
response curve for the summer season dataset started with higher

prediction values for areas closest to roads, increased to a peak around
1500 m and then decreased with further distance from roads. This
decrease was accompanied by expanding confidence intervals however,
indicating increasing uncertainty as distance from road increased. The
responsive curve for ruggedness index was very similar for both
datasets with average prediction values highest for areas with low
terrain variation followed by a rapid decline as terrain variation
increased.

Predictive Mapping
Maps produced by models with coordinates (Figures 4A and 4C)

show a pattern of high prediction values concentrated over a relatively
smaller area whereas maps produced by models without coordinates
(Figures 4B and 4D) show a pattern of high prediction values spread
out across a much larger part of the study area. The distribution of
GSG locations during the breeding season were aggregated relatively
close to the center of the study area and the model with coordinates
produced a pattern of high prediction values that visually agrees with
this aggregation (Figure 4A). However, a small number of locations
closer to the outer boundary of the study area fell within areas with low
prediction values. Absence of the vegetation cover class in the summer
season model with UTM coordinates (Figure 4C) produced a
smoother, less complex pattern of prediction values across the study
area relative to the other maps produced from models with
coordinates. This map shows how the predictor variable representing
distance from streams influenced the model where the stream network
was made more apparent than the other maps.

Discussion
We found that GSG routinely moved up to 10 km from winter and

lekking areas to nesting and summering areas. They shifted from sites
characterized by low juniper and high A. arbuscula dominated areas to
sites with higher A. tridentata spp. vaseyana and A. arbuscula cover.
We found these shifts in habitat use to be predictable across both space
and time during the 3 years of our study. These movements and habitat
choices across such large extents indicate that GSG management will
be most effective when it incorporates actions across entire landscapes.

This study used the Maxent species distribution modeling software
to generate habitat suitability models and distribution maps for the
2006-2008 breeding and summer seasons for a population of GSG.
Response data were represented by telemetry locations of radio
collared birds collected during this period of time and predictor
variables were represented with a set of GIS-based biophysical
attributes with a spatial extent limited to a 10 km radius centered at the
middle of the GSG lek. This analysis provides empirically-mapped
information to help biologists and managers understand the combined
effects of landscape attributes that attract birds to preferred habitat
during different seasons and predict the general directional
movements of birds from breeding to summer seasonal habitats.

This research provides evidence that GSG selectively utilize habitats
within broad landscapes. Based upon the models with and without
UTM coordinates, 9.1% of the study area was estimated as suitable
breeding habitat. The amount of suitable summer habitat estimated
from the model with UTM coordinates was 11.3% of the study area
and 19.9% estimated from the model without UTM coordinates. The
amount of suitable breeding habitat that overlapped with suitable
summer habitat was 1160 ha and 1457 ha for models with and without
UTM coordinates, respectively. This supports the hypothesis developed
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by Kolasa and Waltho [33] that habitats, particularly for species using
large areas, will usually be subunits embedded within the area they are
using. Being able to predict suitable use areas can help managers
allocate limited resources most effectively. For example, managers can
prioritize areas for monitoring habitat suitability in meaningful
locations versus random locations, and target areas for conservation
and ecological rehabilitation/restoration actions within broad
landscapes.

Models with UTM coordinates outperformed models without these
variables and had nearly the same performance for both seasons. The
higher capability to differentiate presences from background locations
suggests that the set of environmental factors controlling habitat
selection were not fully represented in the other predictor variables.
Alternatively, the success of the coordinates suggests it might be the
most useful landscape-scale information to account for the natural
behavior of GSG to maintain a general aggregation near conspecifics
during both seasons. Nonetheless, the region of high breeding habitat
suitability identified with the model with spatial coordinates was also
strongly coincident with a particular range of elevation values as
reflected in the high correlation with values for East UTM, high
training gain, and largest drop in training gain when removed from the
model without UTM coordinates, for both seasons.

The A. arbuscula (ARAR-low sagebrush) cover type with less than
5% juniper cover had the highest predictive values during the breeding
season, contained 75% of breeding season telemetry locations, and
comprised the largest amount (34%) of the study area indicating
higher proportion of use to availability. Others have reported similar
findings of GSG selecting for low sagebrush communities during the
pre-laying [34] and early brood-rearing [2] timeframes. In our study
area, this cover type had greater annual forb cover (338%), a higher
density of annual food forbs (174%), and we observed forb expression
occurred earlier in the growing season than the average for the entire
study area [35]. Increased annual forb availability and the early
expression of forbs may explain why GSG selected the ARAR cover
type during the breeding season as the consumption of forbs during
the pre-laying period and early brood-rearing results in greater hen
reproductive success and chick survival [2,34,35].

During the summer season the ARAR, ARTRVA, and Mesic Areas
contained 48%, 40.5%, and 3.1% of telemetry locations which
comprised 33%, 25%, and 1% of the study area, respectively, indicating
a higher proportion of use to availability. Drut et al. [2] reported
similar results in that GSG increased use of big sagebrush cover types
later in the brood-rearing period and concentrated use near lakebeds
and meadows. The ARTVA cover type (with less than 5% Juniper
cover) had a greater cover of deep-rooted perennial grasses (107%),
perennial forbs (160%), and annual forbs (200%) and greater perennial
(113%) and annual (161%) food forbs than the average for the entire
study area [35]. Having greater cover values and food forbs than
surrounding vegetation communities may explain why GSG predicted
use of this cover time is high during the summer season. GSG
increased predicted use for Mesic Areas is similar to results reported by
Dzialak et al. [36], who found that GSG selected for mesic habitat in
mid and late brood-rearing phases. The Mesic Areas cover type had
greater perennial forb cover (269%), perennial food for density (257%),
and forbs remained succulent longer into the growing season than the
average for the entire study area [35].

Even though the importance of the vegetation class to the Maxent
models dropped with the seasonal transition it remained in the model
without UTM coordinates and revealed significant changes among the
cover types. During both the breeding and summer seasons, GSG
preferred cover types with less than 5 % juniper canopy cover
compared to those same cover types with greater than 5 % juniper
canopy cover (Table 2).Similar to our results, Casazza et al. [37] found
that at larger scales (7.9 – 226.8 ha) sage-grouse avoided pinyon pine
and Utah juniper vegetation communities. Baruch-Mordo et al. [38]
also found similar results in that at a low level of encroachment (>4%
cover) no leks remained active suggesting GSG avoidance of Juniper. In
our study, GSG during the summer season showed a notable increase
in juniper habitat use during the breeding season. We did observe GSG
shading under a single or small group of trees during the summer
season; however, we did not differentiate between differing cover
values (i.e., only > <5 percent canopy cover) or Juniper spatial
configurations, which likely have an influence on GSG habitat use
patterns [38].

ARAR ARAR
JUOC

ARTRVA ARTR
JUOC

ARTRW ARTRW JUOC CHNA CHVI Mesic PIPO

Area (%) 33.0 7.0 25.0 5.0 14.0 1.0 3.0 1.0 10.0

Breeding Locations (%) 75.0 0.6 19.0 1.2 4.2 0.0 0.0 0.0 0.0

Summer Locations (%) 47.9 4.3 40.5 3.7 0.0 0.0 0.6 3.1 0.0

Table 2: Total percent of the area represented by each of the primary vegetation community types.

The low predictive values during the breeding season for the mesic
areas subcategory within the vegetation classification variable along
with the relatively low prediction values for distances close to streams
(relative to the summer season) agrees with results reported by Yost et
al. [13] who found that models of GSG nest habitat suitability in south-
central Oregon produced negative exponent values for riparian
habitats. The indication GSG may have avoided mesic areas during the
breeding season changed considerably during the summer season.
Prediction values were much higher for the closest distances to streams
and for the mesic areas subcategory within the vegetation
classification. Results show that a general movement of GSG occurred

from the center of the study area during the breeding season in a
northeast direction to summer habitat. The shift in habitat was also
reflected in high prediction values extended across a large range of
elevation values where shrub cover types typically produce greater
cover values. An increase in elevation is often associated with higher
moisture availability to plants, particularly during the growing season
when precipitation is limited and temperatures are higher [39,40].
Increased moisture availability at higher elevations is associated with
increased vegetation cover and lengthens the time that forbs remain
succulent. Similarly, Klebenow [1] found that GSG moved up in
elevation following a gradient of green food plant availability in Idaho.
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In addition to succulent forb availability, a greater abundance of forbs
that GSG consume was associated with increased elevation within the
study area.

The distance from streams was a strong predictor variable that
remained in models with and without UTM coordinates indicating a
preference for green habitats during the summer. These results are
consistent with Klebenow’s [1] observations of GSG that gathered near
permanent water sources in late August where green vegetation
remained succulent. Connelly et al. [20] also reported that GSG moved
near agricultural land or more mesic habitats where succulent
vegetation was likely to occur during the summer season. In addition
to forbs remaining succulent through much of the summer in both
perennial systems and meadows they also contained a greater density
of GSG food forbs (150%) compared to all other cover types in the
study area [35]. Drut et al. [2] reported an increased use of lakebeds
and meadows during late brood-rearing (summer season) in
southeastern Oregon. In addition to harboring succulent forbs longer
into the summer season, Drut et al. [39] and Ersch [41] found that
insect abundance increased in mesic habitats, which may attract hens
and result in increased chick survival during early and late brood-
rearing periods [10]. Prediction values were relatively high for areas
with gentle topography and diminished with increasing variation in
terrain. These results are consistent with those reported by Dzialak et
al. [37] who found GSG consistently avoided rough terrain.

Using species occurrence locations and ecological covariate data to
estimate the seasonal changes in the distribution of a species provides
the opportunity of conducting studies in GSG conservation and
distribution that are difficult or impossible using other methods.
However, we are aware that inferences from the models produced from
this study are only as good as the models themselves and which can
only be abstractions of the species fundamental niche [14]. The
ecological characteristics of species affects model accuracy potential,
where species widespread in both geographic and environmental space
are generally more difficult to model than species with compact spatial
distributions [42], as was the case with the sage-grouse data. The
results of this study must also be considered in the context of the list of
serious pitfalls that could affect the accuracy of predictive modeling
and mapping with occurrence data described by Phillips et al. [24] and
Yackulic et al. [43]. For example, all occurrence localities have some
level of precision or error, can be biased by access conduits, sampling
barriers, and variation in sampling effort over space and time. This
analysis was based on presence-only data comprised of repeat
telemetry locations of a small number of individuals from a larger
population and results would most likely vary from what is reported
here had different individuals been captured and tracked.

The choice of variables to use for building models directly affects the
degree to which a model can be generalized to other areas and time
periods. The set of modeling variables might be insufficient to describe
all the parameters of a species fundamental niche relevant to its
distribution at the grain of the modeling task. Large errors within the
predictor variables will directly affect model accuracy. We recognize
that the models reported as final through the variable selection process
used might have included more predictor variables had we used a
higher number of replicates effectively reducing confidence intervals
for training gain values leading to less overlap among competing
reduced models. The choice of modeling features and different
parameter settings available for calibrating models with the Maxent
software influences the results that can be achieved with a particular
dataset. Results of this study were influenced in large part by the spatial

extent of the vegetation class GIS layer which excluded telemetry
locations outside the 10 km radius from contributing to the models.

We used the threshold value of P/E = 1 to objectively identify a
prediction value for reclassifying the continuous logistic output to a
binary map [22,32] of suitable/non-suitable habitat. However, we
found that the choice of a larger width than what was used in this
study for interpolating the values comprising the ratio results in
smaller confidence intervals and a lower reclassification value, whereas
the choice of smaller widths, just the opposite. For instance, output
width values of 0.05 to 0.25 resulted in reclassification values of 0.6 to
0.23, respectively, a difference of 16% of the study area. Therefore, use
of the P/E ratio with Maxent output requires a proviso that the amount
of area allocated to suitability classes depends on the width of output
values chosen to calculate the ratio. Use of the average from the results
of a range of output widths might be a way to more objectively identify
the prediction values to reclassify Maxent output into discrete habitat
suitability classes [44]. These results are similar to those reported by
Aldridge and Boyce [16] who found that nesting females had a strong
avoidance of anthropogenic habitats such as roads.

Implications
Management agencies are required to work with limited resources

relative to the extensive landscapes they typically manage. GSG
selectively utilize portions within broad landscapes; therefore,
managers can target areas for protection and conservation actions
(ecological rehabilitation/restoration) stretching limited resources
further. This requires that managers assess the landscape attributes that
drive GSG habitat use. Managers can use this information to more
effectively implement habitat restoration actions in meaningful
locations.

Replication and more research is needed to refine and improve the
predictive ability in other GSG habitat areas. Although general trends
from this research may help managers predict GSG movement patterns
and subsequently target areas for conservation emphasis, managers
would benefit from greater improvements in modeling that identify
specific areas that GSG are likely to utilize. Supplemental information
addressing the influence of patch and resource spatial distribution
across landscapes on GSG population sustainability would further
augment conservation efforts.
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