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Pheromones are chemical signals which provide conspecifics 
information about gender, dominance and reproductive status [1]. They 
elicit innate and stereotypical reproductive and social behaviors, along 
with neuroendocrine and physiological changes. The vomeronasal 
organ, as part of the accessory olfactory system, is the site for pheromone 
binding to specific receptors, thus initiating a signal transduction 
pathway leading from the vomeronasal neurons to the hypothalamus-
pituitary axis, via the medial amygdale [2]. Molecular evidence has led 
to the isolation of three independent families of vomeronasal receptor 
genes (VR) known as V1Rs [3], V2Rs [4-6], and V3rs (Pantages and 
Dulac [7]) that encode putative pheromone receptors. Vomeronasal 
neurons are classified based on the vomeronasal receptor type and the 
G-protein to which they are coupled. Vomeronasal receptor neurons
with cell bodies in the apical half of the sensory epithelium express the
G-protein alpha subunit Gαi2 and project to the anterior part of the
Anterior Open Bite (AOB), whereas neurons in the basal regions of
the Vomeronasal organ (VNO) neuroepithelium express the G protein
alpha subunit Gαo and project to the posterior regions of the AOB [8-
10]. More recent studies have introduced the formyl peptide receptor
(FPR) as a possible chemosensory receptor [11]. FPRs are selectively
expressed in the neuroepithelium, express either Gαi2 or Gαo, and
are highly dispersed throughout the neuroepithelium [12]. Possible
roles for the FPRs include the assessment of conspecifics or other
species, based on variability in normal bacterial or mitochrondrial
proteins [13]. Recently, it has also been shown that the two classes
of vomeronasal receptors V1Rs and V2Rs use different strategies to
encode chemosensory information [14].

The initial event of pheromonal detection requires the activation of 
specific receptors by pheromones and the transduction of the stimulus. 
The expression of three types of pheromone receptors supports the 
idea that they might be involved in different types of chemosensory 
information. The presence of three types of G-proteins might also suggest 
that the transduction processes of different pheromones might also be 
different. A recent study by Chamero et al. [15] using electrophysiology 
and calcium imaging techniques has provided evidence that Gαo 
might be involved in signal transduction of peptide and protein cues 
by vomeronasal sensory neuron (VSN) that express V2Rs and are Gαo 
-positive and also express at least one of the formylpetide receptors
[12]. They found that the Gαo mutant male mice are less aggressive,
and the maternal aggression in females is also severely reduced [13].
Studies have shown that vomeronasal transduction involves release
of IP3 [16-19]. In the garter snake, a chemo attractant isolated from
its prey induced the generation of inositol-1,4,5-trisphosphate in the
VNO [18]. It has been shown that dialysis of IP3 into the turtle and
rat VNO induces inward currents [17]. The female porcine and mouse
VNO can be stimulated by chemosensory cues to cause an increase
of IP3 [16,19]. These results suggest that pheromonal information is
mediated via the IP3-dependent pathway in the vomeronasal receptor
neurons. Electrophysiological recordings have demonstrated that
stimuli applied to the VN epithelium causes an increase in firing rate
of individual neurons in the AOB [18,20]. Furthermore, stimuli applied
to the surface of VN receptor neurons or IP3 dialyzed into VN receptor
neurons cause membrane depolarization, as demonstrated using patch-
clamp recordings in snakes [21].

Although, the mechanism(s) involved in Ca2+ influx in chemosensory 
transduction in the VN system remains unknown, transient receptor 
potential (TRPC2) proteins have been implicated in Ca2+ influx, as 
either Ca2+ channels [22] or non-selective cation channels [23-28], and 
in some cases the function of TRPC2 channels involve interaction with 
IP3Rsm [23,27,29]. In rat, TRPC2 has been shown to be expressed in 
VN neurons and is heavily localized to VN sensory microvilli [30]. 
TRPC2 might represent the primary conductance that is activated 
by pheromone signals, or could mediate a secondary amplification of 
the pheromone response. The identification of the TRPC2 has led to 
a model of the VNO signal transduction that parallels the Drosophila 
phototransduction cascade [30]. According to this model, G-protein 
activation by vomeronasal G-protein-coupled receptors (GPCRs) 
triggers a phospholipase C-dependent cascade, which in turn directly 
activates either TRPC2 or another associated conductance. What is 
the mechanism of TRPC2 activation? Phospholipase C (PLC) activity 
results in the cleavage of phosphatidylinositol-4,5-biphosphate, 
leading to an increase in the intracellular concentrations of the second 
messengers IP3 and DAG, both of which have been implicated in TRPC2 
activation [31,32]. Patch Clamp recordings of hamster VNO neurons 
identified the abundant expression of Ca2+ activated non-selective 
cation channel, with properties that are consistent with a direct role in 
VNO sensory transduction, or with an indirect function in amplifying 
the primary sensory response [30]. The TRPC2 channel has been 
shown to induce the flow of calcium ions in response to pheromones, 
such as 2-heptanone and 2,5-dimethylpyrazine [28]. Studies by Stowers 
et al. [33] and Leypold et al. [34] showed that the genetic ablation of 
TRPC2 either eliminates or strongly reduces the sensory response of 
the VNO to urine or volatile pheromones. In 2004, Lucas et al. [35] 
proposed that the primary electrical response to pheromones depends 
on diacylglycerol (DAG) and not on IP3 or arachidonic acid. It is 
possible that DAG may activate certain pathways which are currently 
unclear. These studies demonstrate that IP3 and TRPC2 play a role 
in VSN activation, but a thorough characterization of the properties 
and pharmacology of the IP3-activated currents remains to be done. 
Another issue is that some pheromonal responses have been shown to 
occur in the absence of the TRPC2, suggesting that it might not be the 
only channel involved in VNO transduction. A recent study by Kelliher 
et al. [36] showed that the pregnancy block effect can still occur in the 
absence of the TRPC2 channel. Murine MHC class I peptide ligands are 
the first identified vomeronasal stimuli that can mediate the pregnancy 
block effect [37,38]. In order to investigate the transduction pathways of 
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MHC class I peptides, Kelliher et al. [36] used mice with a homozygous 
deficiency in the TRPC2 cation channel gene. They found that the 
loss of the TRPC2 channel did not influence the formation of social 
memories in the context of the Bruce effect, thus indicating that TRPC2 
is not part of the transduction cascade of some social cues, by peptide-
sensitive vomeronasal sensory neuron’s (VSNs) located in the basal 
zone of the VNO or that it participates in a redundant system. Their 
results suggest an alternative, TRPC2-independent signal transduction 
mechanism in the detection of molecular cues required for the Bruce 
Effect [36]. Phenotypic discrepancies have also been observed between 
mice exhibiting genetic manipulation or surgical VNO lesions [39-
41]. For example, impaired sexual behavior toward females has been 
reported in male mice after VNO lesions [42] whereas no such deficits 
were reported in TRPC2-/- mice [33,34,41]. Similarly, in sexually naïve 
male mice, VNO removal prevents ultrasonic vocalizations in response 
to female chemo signal [43], whereas robust vocalizations are produced 
by TRPC2-/- males [33]. These studies suggest that pheromonal 
transduction is not exclusively mediated by the TRPC2 channels. 
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