
Review on Bioremediation of Metal Contaminated Soils
Yamini Agrawal1, Isha Gunwal2 and Payal Mago1*

1Shaheed Rajguru college of Applied Sciences for Women, University of Delhi, New Delhi, India
2Sri Aurobindo College, University of Delhi, New Delhi, India
*Corresponding author: Payal Mago, ShaheedRajguru college of Applied Sciences for Women, University of Delhi, New Delhi, India, Tel: 9711169572; E-mail:
payal500@hotmail.com

Received date: June 17, 2020; Accepted date: July 01, 2020; Published date: July 08, 2020

Copyright: © 2020 Yamini A, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Rapidly increasing population and industrialization are the major factors in environmental degradation.
Development of eco-friendly approach to reduce environmental contamination is an issue in great demand. The
challenge is to build up a cost-effective and safer technology for cleaning up of contaminated environments.
Bioremediation is promising new technology to decontaminate polluted surroundings. Heavy metals are the major
toxic non-biodegradable environmental pollutant and their cleanup from environment is a chief concern. Several
conventional physical and chemical technologies have already been employed for their removal but majority of them
are not very flourishing in terms of their cost and efficacy. Therefore, we present a review on status of studies
employing biological materials (microbes and plants) for heavy metal removal and recovery.

Keywords: Microbial remediation; Phytoremediation; Heavy metals;
Metagenomics

Introduction
Modern lifestyle, population rise, industrial activities and

urbanization has largely elevated the release of large amounts of metal
contaminants (such as arsenic, cadmium, copper, lead, mercury, nickel,
zinc, etc.) into the environment. Landfill, mining industries and
refineries are the potential contamination sites containing large
amount of inorganic toxic waste that impose huge threat to human life
and environment. Continued exposure and accumulation of these
heavy metals deleteriously affect the biota by creating oxidative stress
in the body, impairing significant biological functions which could
ultimately lead to cell death [1]. There is, therefore, an urgent need to
hunt environment friendly measures for these accumulated heavy
metals at contamination sites. Bioremediation of metal polluted sites
using plants and microbes is one such cost effective alternate, having
potential to refurbish metal contaminated environments. However,
there is a limited understanding of microbial metabolism of
accumulated metals at such sites that restricts its precise
implementation. Progress in research projects are therefore in demand
to understand the molecular mechanism of microbes (culturable as
well as non-culturable) in bioremediation and to evaluate their
remediation potency using genome-enabled experimental techniques.
Application of genome-scale microbial models to bioremediation has
become quite feasible these days due to the complete genome
sequencing of microorganisms that aid in providing visions on genes
related to the microbial sensitivity towards metal contaminants in the
soil. Further, microbial diversity analysis using metagenomics
approaches would provide data related to community composition,
relative abundance of microbes at the specific habitat (such as
contaminated soil) that would be helpful in designing potential
bioremediation strategies at a particular site.

International Status of Bioremediation of Metal
Contaminated Soils

Heavy metal pollution is a major environmental problem
worldwide. A lot of research therefore has focused on bioremediation
strategies to overcome this issue. Leading researchers in this field are
OlubukolaOlurantiBabalola and group from Florida. They have been
interested in understanding the plant-soil microbe interactions,
rhizospheremetagenomics, symbiosis and aspects of stress tolerance
with intend to provide effective biocontrol products. For this, they have
surveyed various mining sites for heavy metal pollutants and revealed
the strategies adopted by bacteria to resist these heavy metals [2].
Microbial biosorbents based strategy for bioremediation of hazardous
metals was further introduced [3]. D. Huguenot and group from
France provided the comparative account of bioremediation strategies
for contaminated environment. They have established that the
collective utilization of plant and bacteria was the most helpful
alternative for the management of the polluted soil, in comparison to
natural attenuation, bioaugmentation or phytoremediation strategies
alone [4]. Further, various bioremediation strategies: bioleaching,
bioimmobilization and bioaugmentation- assisted phytoextraction for
copper-contaminated soils have also been described by their research
group [5]. Jae-Seong So and group from Korea were involved in
bioremediation of heavy metals using isolated bacteria, bacterial
mixtures and microbially induced calcite precipitation method [6-8].
Their results show that the use of bacterial mixtures and microbially
induced calcite precipitation based sequestration of soluble heavy
metals via coprecipitation with calcite would be useful for toxic heavy
metal bioremediation from the contaminated environment. A.
Sumiahadi and group from Turkey and Indonesia have emphasized on
phytoremediation technology [9]. They have tested plant physiology
with heavy metal in artificial contaminated soil [10]. KawtarFikri-
Benbrahim and group from Morocco have explored Rhizobium-
legume symbioses as an effective tool to refurbish heavy metal
contaminated soils [11,12]. Matthias Kästner and group from
Germany provided the valuable contribution to the assessment of
potential remediation action at polycyclic aromatic hydrocarbons
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polluted sites with investigation of insoluble hydrophobic substrates
turnover in the environment catalysed by microorganisms [13], role of
composting processes in effective treatment of soil pollutants [14], and
analysis of tar oil contaminated soil characteristics for effective
treatment plan [15]. GuangmingZeng and group from China have
reviewed the list of bacterial and fungal species that can tolerate
polycyclic aromatic hydrocarbons and heavy metal combined
pollution. They provided insights on bioremediation mechanisms by
microbes under such contaminated environments [16].

All the above mentioned research groups are extensively working on
development of bioremediation strategies for decontaminating the
polluted environment. However, they have not yet utilized genomics
approach for exploring microbial diversity at the contaminated site.
Genome-wide DNA sequencing is a potent technique to study
diversity, distribution and composition of microbial community which
has aided in providing some novel postulates with respect to microbial
catabolic potential, metal tolerance, enzymatic activity, phylogenetic
profile in long term polluted environments [17,18]. Genome
sequencing and comparative genomics enabled the identification of
potential genes for biodegradation of aromatic compounds and copper
homeostasis in non-pathogenic Mycobacterium spp. and suggested the
role of this group of Mycobacterium spp. in bioremediation as well as
the evolution of copper homeostasis within the Mycobacterium genus
[19]. Genome-based analysis resolved the metagenomics of a
bioremediation system for degradation of thiocyanate in mine water
containing suspended solid mineral tailings. The re¬sults from this
investigation have provided novel insights into the community
composition of the industrially relevant community, giving potential
for improved process control [20]. Genome sequences of three
Psychrobacter sp. strains made it possible to identify the genes related
to mercury detoxification, heavy metals and antibiotic resistance,
showing their potential applications in bioremediation [21]. Further,
complete genomic sequences of bacteria Arthrobacter sp. strain LS16,
Achromobacter sp. B7 provided potential for their applications in
bioremediation and bioproducts [22,23]. The increasing availability of
microbial genome sequences involved in processes important in
bioremediation may provide a good approach to develop models that
can be truly predictive for evaluating the probable response of
subsurface microorganisms to possible bioremediation approaches
prior to implementation [24].

National Status of Bioremediation of Metal Contaminated
Soils

Many research groups from India are working on bioremediation of
heavy metal contaminated environment. One of the research group
conducted study to assess the phytoremediation potential of Coriander
sativum for heavy metals lead and Arsenic contaminated soil, collected
from an industrial area of Govindpura, Bhopal, Madhya Pradesh [1].
Basha and Rajaganesh studied the textile industry dye effluents from
Komarapalayam, Tamil Nadu for bacterial bioremediation of heavy
metals [25]. Another research group investigated the abilities of
microorganisms and plants in terms of tolerance and degradation of
heavy metals. They have also discussed the advances in remediation
technologies and strategies to explore these immense and valuable
biological resources for the bioremediation. Genetic and molecular
basis of metal tolerance in microbes were conferred with special
reference to the genomics of heavy metal accumulator plants and the
identification of functional genes involved in tolerance and
detoxification [26]. A review by Yadav et al. describes about

bioremediation technology and mechanism of heavy metal uptake by
microorganisms with the information pertaining to sources and effects
of various heavy metals on plants and human health. They also
reported some potential species of microorganisms and plants which
are commonly used for heavy metal removal [27]. A study conducted
on samples of sewage, sludge and industrial effluents from sewage
treatment plants at Karnal, Panipat and electroplating industry at
Sonepat indicated the potential of fungi as biosorbent for removal of
heavy metals from wastewater and industrial effluents containing
higher concentration of heavy metals [28]. The biosorption ability of
bacterial strain Bacillus thuringiensis OSM29 recovered from
rhizosphere of cauliflower grown in soils irrigated by metal
contaminated water, near Aligarh, North India was examined. It was
observed that the metal biosorbing ability of B. thuringiensis OSM29
was fairly rapid which could be an advantage for large scale treatment
of contaminated sites [29]. Further, a study on isolation of heavy metal
tolerant microbes from sewage water collected from different localities
(domestic, industrial and agricultural sites) of Jabalpur,
MadhyaPradesh, India recommended that isolated Bacillus sp. has the
properties to resist a wide range of heavy metals and antibiotics [30].
All these studies have reflected the widened research and development
scope of microbes as potential agent for bioremediation of heavy
metals polluted environment. However, so far genome wide diversity
analysis of microbes has not been performed for any contaminated site
in India, to select a better and specific target agent.

Conclusion
As it will be clear from above mentioned research status that so far

utilization of genomic tools in bioremediation is naïve, quite a few
studies from India and abroad have explicitly utilized genome-wide
approaches to decipher molecular basis of microbial mechanisms in
bioremediation. Also there is a lack of implementation in confident
designing of bioremediation strategies for metal contaminated sites.
Therefore studies exploring the remediation capacity of heavy metals
by microbial remediation and phytoremediation processes are much
desirous.
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