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Introduction
Nickel-based super alloys have been widely used as high 

temperature structural materials in gas turbine engine applications 
owing to their excellent high temperature rupture life, corrosion and 
oxidation resistance [1,2]. The increasing trend of higher operating 
temperatures and pressure ratios in aero engines require nickel-based 
super alloys with even higher alloying content to give increased levels 
of creep resistance, greater low cycle fatigue resistance, with micro 
structural stability and damage tolerance at the elevated temperatures 
[1]. However due to the complex chemistry and high alloying content 
of these super alloys, macro segregation and coarse grain size occurs in 
the convectional cast and wrought processes [3]. A powder metallurgy 
(PM) route can eliminate macro segregation since the biggest amount 
of segregation in the parts produced by PM methods is limited by 
particle size [4]. In addition, by using PM methods micro structural 
control can be enhanced and thus component performance can be 
improved [5]. Also, complex net-shaped components can be produced 
by some PM technologies [6], such as hot isostatic pressing [7], metal 
injection moulding [4], additive layer manufacturing [8,9] and laser 
deposition manufacturing [10]. Two typical powder production 
methods for nickel-based super alloys are Argon Atomisation (AA) 
and Plasma Rotating Electrode Process (PREP). In the AA process 
molten super alloy is poured through a preheated tundish system into 
a gas nozzle where the melt stream is disintegrated by high pressure 
inert gas stream into the formation of fine particles. PREP technology 
uses a plasma arc to melt a high-speed rotating alloy bar, and liquid 
droplets that are flung off by centrifugal force are solidified in inert 
gas. The differences between AA powder and PREP powder are 
mainly in particle shape, density and size range. Figure 1 shows the 
powder produced by PREP and AA technology. It can be seen that AA 
powder normally consists of spherical particles with few small particles 
attached and micro-crystalline structures with fine dendrite can be 
found [1] due to higher cooling rates. AA powder can be produced 
to be very fine. PREP powder exhibits single uniform spherical shape 
and relatively large size around 100 µm [11]. Currently typical methods 
for processing high performance PM super alloys include: hot isostatic 

pressing (HIPing) [7], HIP+ hot isothermal forging (HIFing) [12-
14] and HIPing+ hot extrusion +HIFing [15] as shown in Figure 2. 
In Route 2 and 3, hot extrusion and hot isothermal forging require 
specialised tooling and high tonnage equipment in order to obtain final 
component shape. In Route 2, the extrusion operation, which provides 
an axisymmetric strain distribution, refines the microstructure 
for high-resolution ultrasonic inspection to prove its integrity and 
permitting hot isothermally forging [16]. HIPing process can be either 
a net-shape forming process [17,18], as for Route 1 in Figure 2, or 
simply a hot compaction process, as shown in Route 2 and 3. As a net-
shape process, HIPing has been used for turbine discs of aero engines 
by VILS Stock Co, using PREP powder since 1976 [1]. However, 
for most AA powder, three intrinsic problems can arise when it is 
HIPed. They are: prior particle boundary (PPB) precipitate networks 
[19-22], thermal induced porosity (TIP) and ceramic inclusion [23]. 
During HIPing, trace amounts of gas entrapped in powder particles 
could be compressed and dissolved into the powder particle surface 
under high temperature and high pressure; As a consequence, during 
subsequent high temperature heat treatment, TIP may be found in the 
HIPed super alloys. TIP can be decreased by evacuating the gas in the 
encapsulated powder and selecting appropriate post-HIPing solution 
treatment temperature. In AA powder, due to the contact between 
molten super alloys and ceramic lining of the atomising nozzle, 
ceramic inclusions can be found in the powder particles which reduce 
strength and integrity of the HIPed parts. Large ceramic inclusions 
can be removed by screening and sieving [1]. PPB precipitation has 
been the major issue which largely limits the application of net-shaped 
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HIPing of nickel-based super alloys. It is generally believed that PPBs 
are caused by atomic segregation and particle contamination. Both 
result in precipitation at PPBs, either as carbides, oxides, oxy-carbides, 
or possibly as oxy-carbonitrides [24]. The undesirable PPBs may result 
in detrimental mechanical properties: PPB precipitates are brittle and 
thus provide an easy fracture path. A typical microstructure of PPBs in 
Russian PM super alloy EP741NP is shown in Figure 3a and b shows 
PPBs on the fracture surface of a laboratory tensile test, in which the 
presence of PPBs has led to lower ductility and inferior stress rupture 
properties. Therefore understanding the formation of PPB mechanisms 
and developing methods to control PPB effects are of importance for 
producing high performance PM super alloy components [25,26]. 

PPB Formation
Since PPBs have been one of the critical issues for net-shaped 

HIPing, much research of PPB formation mechanisms has been 
carried out. In this paper, characterisation of initial powder at room 
temperature, powder at high temperature and powder during HIP 
processing, are reviewed. 

Initial powder at room temperature

Zhang et al. [27] studied the effect of cooling rate during powder 
atomisation. They found that a higher cooling rate results in smaller 
particles, and they also observed that a large amount of carbide 
precipitates are distributed in the dendrite and at cell boundaries for 
a high cooling rate. At room temperature, metallic oxides, carbides 
and oxy-carbides can be found on powder surfaces after the liquid 
super alloy atomisation. Rao et al. [28] stated that PPB precipitation in 
super alloy Inconel is attributed to the atomic segregation and oxygen 
induced surface contamination of pre-alloyed powders. They explained 
that elements such as Al and Ti react with the absorbed oxygen and 
form the highly stable oxides (Al2O3 and TiO2) at the powder surface. 
Liu et al. [29] analysed the chemical composition on particle surfaces 
of super alloy FGH 96 powder, using Auger electron spectroscopy 
(AES). They found that elements O, C and Ti segregate on particle 
surfaces, which consist of an absorption layer and oxy-carbide layer. 
The absorption layer is mainly composed of O and C atoms, while the 
oxy-carbide layer is characterised as Ti oxide and carbide. As shown in 
Figure 4, with an increase of sputtering depth, fractions of C, O and Ti 
elements varied significantly: in a depth range of 0-2 nm and the high 
fraction of O, C elements is attributed to the absorption layer of O and 
C atoms. The fraction of Ti increases firstly and then levels off, which 
indicates that for the absorption layer, O and C elements dominated; 
for the oxy-carbide layer, Ti, C and O elements formed. Waters et al. 
[30] also reported that surface analysis of the powder particles prior 
to hot compaction, using Auger electron spectroscopy, revealed the 
presence of thin oxide layers. 

 

Figure 1: Powder of PM nickel-based superalloy produced by (a) PREP 
technology and (b) AA technology [11].
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Figure 2: Three main processing routes for PM super alloys.
 

Figure 3: (a) Typical microstructure of PPBs in powder metallurgy super alloy 
(b) Fractograph of a specimen that shows the presence of PPBs. 
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Figure 4: Change of composition with distance from surface profiles of 
alloying elements (O, C and Ti) of FGH96 superalloy powders for particles 
size 50 µm. 
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Powder at high temperature

Microstructural evolution of nickel-based super alloy occurs 
when the powder is annealed at high temperatures. Qiu [24] studied 
heat treatment of RR1000 at different temperatures to understand the 
microstructural evolution that arises. It was found that at temperatures 
of 900°C and above, very fine precipitates were formed on the particle 
surface. The precipitates coarsened and became more discrete with 
increasing temperature up to 1200°C. Qiu [24] also used EDX analysis 
to discover that precipitates formed on the particle surface during 
heat treatment were rich in Hf, Zr and O, which may be assigned as 
(Hf, Zr) oxides. On the other hand, no Hf was found on the particle 
surface of as-received powders. Thus it was inferred that the Hf which 
contributed to the formation of precipitates on particle surfaces may 
have come from the interior through diffusion, which finally led to 
the elimination of Hf segregation in the interior of particles. Another 
key factor affecting the number and size of precipitates was found to 
be oxygen. With increased oxygen level, precipitates became coarser 
and more continuously distributed. Liu et al. [29] found that MC’ 
metastable carbide precipitates formed during the quick particle 
solidification, after pre-heat treatment changed to stable MC carbide 
and M23C6 precipitates. This improves the stability and morphology of 
carbide in the particles. Zhang et al. [27] studied the microstructures 
of FGH96 powder annealed in the temperature range 750-1150°C. 
As shown in Figure 5a, at a carbide subsolvus temperature 750°C 
the inter-dendritic interstices are decorated with white carbides. The 
investigators compared this to the microstructure of the atomised 
powder and found that the amount of carbides was decreased due to 
their partial dissolution. As shown in Figure 5b, at a carbide super 
solvus temperature 1150°C, no carbides are formed at grain boundaries 
and a few small carbides are visible within the grains. Based on Qiu and 
Zhang’s work, it can be deduced that at high temperature the decreased 
amount of carbide inside the powder can be attributed to dissolution 
at elevated temperature, and diffusion to particle surfaces which form 
PPBs. 

Powder during HIPing process

During HIPing, powder is exposed to both elevated temperature 
and pressure. It is thought that during the initial stages of densification 
titanium and carbon within the powder migrate to particle surfaces as 
a result of existing surface oxides [31]. Rao et al. [28] reasoned that 

the oxides (Al2O3 and TiO2) at particle surfaces, act as the nuclei for 
preferential precipitation of MC-type carbides along the particle 
boundaries, either during HIPing process, or during post HIPing heat 
treatment process. Qiu [20] found that during HIPing, PPB is formed 
by the diffusion of Hf and Zr from the interior of powder particles to 
the particle surfaces where the oxygen level is usually high. Stolz [32] 
also thought that during the initial stages of densification in HIPing 
titanium and carbon within the powder migrate to the particle surfaces 
as a result of the oxides existing there. With regard to the morphology 
of PPB, Qiu [24] found that these precipitates were not continuously 
distributed like a film but instead were discrete particles. But Stolz [32] 
stated that the migration of titanium and carbon within the powder 
results in a film of stable titanium oxy-carbides on the PPBs. With 
regard to HIPing temperature, Qiu [24] examined PPB precipitate 
distribution of samples after HIPing at different temperatures, shown 
in Figure 6, and stated that no great difference could be distinguished in 
precipitate size and distribution after HIPing at different temperatures 
below the gamma prime solvus around 1160°C. However, HIPing at 
super-solvus temperatures results in grains in the original particles 
growing beyond PPBs, which reduces the density of PPBs in HIPed 
samples, compared with those samples HIPed at a lower sub-solvus 
temperature [20]. With regard to the particle size, Stolz [32] found that 
larger particles are strained to a much smaller degree than small particles 
during a typical HIP cycle. PPB networks tend to form on these larger 
less-deformed powder particles. However May et al. [33] found that a 
greater degree of PPB decoration occurs in the finer powder particle 
size fraction, and following a super-solvus heat treatment these PPBs 
pin grain boundaries of the fine powder particle, while the reduction of 
PPB decoration in coarse powder particle compacts allows significant 
grain growth. 

PPB formation mechanisms

Most researchers are of the opinion that oxides at particle surfaces 
are preferential nucleation sites for carbides [28,32,34], but a few claim 
that the metal-metal interfaces are the preferential precipitation sites 
[35]. The formation mechanism of the former mechanism is shown 
schematically in Figure 7. At room temperature, carbides formed 
both on the surface and within the powder interior can be observed in 
inter dendritic and in intercellular regions [23]. The non-equilibrium 
carbides are predominantly metal carbides of the form MC’ since 
elements such as Ti, Nb and Mo were detected [5]. After the powder 
has been encapsulated and the envelope evacuated of air, the absorbed 
oxygen at the powder surface can react with Al and Ti and form an 
oxide layer of Al2O3 and TiO2 and so forth [5]. During HIPing and 
heat treatment, that preliminary surface oxidation aids the subsequent 
precipitation of MC since specific oxide particles act as nuclei for the 
formation of MC or M23C6 [5]. It is thought that during the initial stages 
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Figure 5: Microstructures of FGH96 powder annealed at the temperatures of (a) 
subsolvus temperature: 750°C and (b) supersolvus temperature: 1150°C [27].

 

Figure 6: Secondary electron SEM micrographs showing the PPB 
precipitate distribution of RR 1000 samples after being HIPed at (a) 
1107°C; (b)1130°C [24].
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of densification in HIPing that titanium and carbon within the powder 
migrate to particle surfaces as a result of oxides on the outside of the 
particles [32]. 

Methods to Reduce the Detrimental Effect of PPBs
Many researchers have been working on methods to reduce PPB 

effects, by optimising heat treatment and the proportion of composition 
elements, and introducing deformation. 

Heat treatment

Zhang et al. [27] found that powder heat treatment can reduce 
prior particle boundaries. The fundamental mechanism of powder 
heat treatment is based on the control of carbide precipitation. Dahlen 
et al. [36] found that powder heat treatment can stabilise carbides in 
the form of MC and M23C6 at the interior of particles, resulting in the 
hindrance of re-precipitation at PPBs. Qiu et al. [20] deduced that 
HIPing at super-solvus temperatures reduced the density of PPBs 
compared with the density observed in samples HIPed at sub-solvus 
temperatures, by making grains within the original powder particles 
grow beyond the precipitates of PPBs, thus resulting in larger grains 
with serrated boundaries. 

Proportion of composition elements

Ma et al. [37] studied the effect of Hfon carbides with different Hf 
content in FGH96. They classified the carbides in HIPed FGH4096 
alloys into PPB carbides which are distributed on PPBs, and non-PPB 
carbides which are distributed internally, as shown in Figure 8. From 
electron diffraction patterns, they found that the formation of PPB MC 
was suppressed in the alloy with 0.3 wt % Hf, but more MC precipitated 
at PPBs when Hf content of the alloy was raised to 0.6 wt %. As a strong 
carbide forming element, Hf promotes the formation of MC carbides. 
Hf increases the number of insoluble MC nuclei by stabilising the 
interior MC, thus the amount of non-PPB carbides is increased with 
increasing of Hf. However, more oxide nuclei are formed at PPBs as 
Hf content increases, which promote the precipitation of PPB carbides. 
They concluded that the recommended Hf content in FGH4096 alloy, 
for minimising PPB carbides, is around 0.3 wt %. Janowski et al. [38], 

Chen et al. [39] and Wu et al. [40] also found that Hf promotes the 
precipitation of blocky MC by increasing the interfacial misfit between 
the MC/matrix interfaces, and retards the transformation of MC to 
M23C6 during long-time aging at intermediate temperatures. 

Effect of deformation on PPBs

It is found that heat treatment and changing the composition of super 
alloys can reduce the effect of PPBs to some extent. Thermo-mechanical 
processing steps such as rolling, extrusion and forging operations can 
break up PPB networks efficiently [16] (Figure 9). Rao et al. [41] rolled 
HIPed IN718 to 40% reduction, and found that PPBs were eliminated 
completely. A very fine recrystallized grain structure with uniform 
precipitation of strengthening phases was obtained and thereby a great 
improvement in high temperature mechanical properties. Hardy [42] 
defined an industrial process to reduce the effect of PPBs in Nickel-
based super alloy RR1000. Following consolidation of canned powder 
by hot isostatic pressing or hot compaction, extrusion of the cans with 
a reduction ratio greater than 4. 5:1 is normally used. The purpose of 
the extrusion stage is to break down any PPBs and to produce a fine 
grain size that is typically smaller than 6 µm. This structure is ideal 
for inspection of the billet and subsequent superplastic deformation of 
isothermal forging. Hot forging or isothermal forging is used to produce 
the desired finished shape and grain structure. Since lower strain rates 
are used during deformation, isothermal forging at slow strain rates 
and high temperatures (slightly below the γ’ solvus) [43] currently 
offers greater control on structure and enables quire complexity, near-
net shaped components to be formed [44]. May et al. [33] stated that 
for critical applications such as disc rotor components in aero-engines, 
the consolidated alloy powder particles should be extruded to break 
down carbide and oxide networks, i. e. PPBs, and to refine the grain 
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Figure 7: Schematic diagram of PPB formation at high temperatures.

 

Figure 8: Carbide distribution of HIPed FGH4096 alloy with different Hf 
contents: (a) Alloy 1: 0 wt%. (b) Alloy 2: 0.3 wt%. (c) Alloy 3: 0.6 wt%. 

 

Figure 9: Typical microstructures of RR1000 processed by (a) HIPing; 
and (b) HIPing + Extrusion + Forging.
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size for isothermal forging. Mourer et al. [45] produced a billet of René 
104 with a diameter of 235 mm, from which to manufacture a military 
aircraft engine high pressure turbine disk with dual microstructures. 
Two extrusions and isothermal forging were employed to produce the 
finished parts. Extrusion and isothermal forging were also used for 
producing a preform for a dual alloy disk of SR3 bore - KM4 rim [46]. 
A schematic of the effect of plastic deformation is shown in Figure 10. 
After hot isostatic pressing, a certain degree of dendrite structure and 
fine grain structure can be found in the material, depending on HIPing 
temperature, pressure and time. Due to the long-time of exposure to 
elevated temperature, Ti, Al and other metal elements diffuse to particle 
surfaces and react with oxygen in a trace amount of the absorbed air, 
and thus PPBs are precipitated during HIPing. Through hot extrusion, 
powder particles as well as PPBs are elongated along the direction of 
material flow. Recrystallization can be found in the material and the 
grains are refined significantly due to the severe plastic deformation, 
and therefore the PPB networks are ruptured. In the hot forging or 
hot isothermal forging that follows, grains grow due to the elevated 
temperature and thus PPB fragments are distributed throughout the 
material. Therefore the detrimental effect of PPB on the mechanical 
properties is reduced, and the strength and reliability of the material 
are increased. 

Summary and Conclusions
Prior particle boundaries are significant defects in As-HIPed 

AA powder super alloy, and can reduce low cycle fatigue resistance. 
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Figure 10: Effects of deformation on rupture of PPB nets.

Formation of PPBs is related to temperature and time since it is a 
diffusion process. Many researchers have proposed that pre-heat 
treatment, proper HIP temperatures and material composition can 
reduce the effect of PPB to a certain extent. Furthermore, deformation 
such as extrusion and forging can rupture PPBs and greatly reduce their 
detrimental effects. It is important to gain further understanding of the 
formation mechanisms of PPB, and thus to develop novel processes 
in which the formation of PPB can be controlled. Since the formation 
of PPBs mainly takes place during HIPing, it is important to develop 
a process, in which the time of exposure to elevated temperature can 
be shortened, plastic deformation can be introduced to disperse the 
existing PPBs and the desired and final shape of the component can be 
achieved. Due to the oxide on the surface of powders, PPB formation 
is an intrinsic problem in powder metallurgy of Nickel-based super 
alloys. It is very important to establish a standard to quantify and 
determine the acceptable amount and morphology of PPB. 
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