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Abstract

Ataxia, a gross lack of motor control, is symptomatic of broader neurological disorder, typically of the cerebellum.
A few case reports have documented the association of primate erythroparvovirus 1 [more commonly known as
human parvovirus B19 (B19)] with ataxia. Parvoviruses are small DNA viruses that infect many different species.
B19 is a well-known cause of erythema infectiosum, a common rash disease of childhood. B19 is also a cause of
hydrops fetalis, a severe anemia of the fetus. Is it possible that the human parvovirus B19 is a cause of ataxia?
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Summary of Case Reports
In a 1999 report [1], a 2-year-old boy developed acute truncal ataxia

and horizontal nystagmus that prevented him from walking or
maintaining a sitting position. These symptoms were followed four
days later by erythema infectiosum. B19 infection was confirmed by
genomic DNA and anti-B19 antibodies (IgM and IgG) in serum. The
ataxia and nystagmus dissipated within one week, and there were no
neurological sequelae in this case. A vascular reaction to the B19
infection in the cerebellum was hypothesized to contribute to the
ataxia.

Two more cases of ataxia were reported by Barah, et al. [2,3]. Ages
were 27 months (female) and 13 years (male). B19 DNA was positive in
the CSF. Both children died and were found to have cerebellar
pathology at autopsy.

A fourth case, reported in 2004 [4], documented a 16-month-old
girl who presented with bone marrow abnormalities, progressive
ataxia, tremor, and nystagmus. Serum was positive for anti-B19 IgM
antibody indicative of acute infection (IgG seroconversion was later
documented). She recovered gradually over two years. No further
discussion of the ataxia was offered as neurologic findings were not the
main focus of the report.

A fifth case, from 2008 [5], documented a 4-year-old female who
developed a cerebellar syndrome of severe ataxia, nystagmus,
hypotonia, head and trunk tremors, dysmetria, and dysarthria. Serum
and CSF were positive for B19 DNA by polymerase chain reaction
(PCR); serum was positive for anti-B19 IgM and IgG. Symptoms
persisted at 4 month follow up.

A sixth case, from 2014 [6] documented a 70-year-old male with a
history of chronic lymphocytic leukemia and bone marrow evidence of
B19 infection by immunostaining. Neurologic exam was significant for
dysarthric/scanning speech, severe dysmetria, intention tremor, wide-
based gait and truncal ataxia. Serum and CSF were positive for B19

DNA by PCR. Some symptoms of ataxia improved with intravenous
immunoglobulin (IVIG) treatment.

Evidence of B19 Infection of Cerebellum
In 115 cerebellum tissues from unique individuals, we showed that

greater than 70% were positive by nested PCR for B19 DNA [7]. In a
small sub-cohort (N=10), serum anti-B19 IgG was confirmed in 80%.
The number of B19-positive cerebellum samples was nearly double that
found in the dorsolateral prefrontal cortex from the same cohort [8]
suggesting that the cerebellum is a favored target than other areas of
the brain for B19 infection.

What does the Animal Literature Tell us?
Case reports are instructive and very interesting, but difficult to

determine causation. Animal, both natural and experimental, models
can provide further support. Several studies, many performed decades
before the first human case report, have shown that infections with
animal parvoviruses lead to cerebellar hypoplasia and cerebellar ataxia
in various feline [9,10], rodent (mice, rat, and hamster) [11-14] and
ferret [15] models. The specific viruses are feline panleukopenia virus,
rat virus, minute virus of mice I, and mink enteritis virus. The exact
cerebellar cell target, granular or Purkinje, is dependent on the virus
and host. Early neurodevelopment appears to be the window of
susceptibility.

B19 and Ataxia: Possible Mechanisms of Action
The exact mechanism by which B19 may cause cerebellar disease,

particularly ataxia, is not known. One mechanism is by direct
cytotoxicity of cerebellar neurons due to viral replication during early
neurodevelopment which has been shown in the animal studies noted
above as well as more directly by Ohshima et al. who showed that the
H-1 parvovirus induces apoptosis in the cerebellum [16]. Another
possibility is that the virus may exert epigenetic effects by modifying
cellular gene expression. Though there have been no studies linking
B19 to cerebellar ataxia via epigenetic effects, there has been one report
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of B19 association with a DNA methylation pattern in B cells of
subjects with acute lymphoblastic leukemia [17]. In one form of
hereditary ataxia, Friedreich ataxia (FRDA), a genetic mutation within
the first intron of the Frataxin (FXN) gene has been identified as the
cause [18]. In studies of FRDA-associated cells, tissues, and mouse
models, it has been found that epigenetic alterations, especially DNA
methylation, might be involved in the silencing of FXN in FRDA
[19-21]. Therefore, aberrant expression of the enzymes that are
required for either establishment or maintenance of DNA methylation,
including DNA methyltransferases and histone methyltransferase
G9a/GLP [22,23], might lead to the occurrence of FRDA. The question
remains as to whether B19-induced DNA methylation or other
epigenetic processes may play a role in any form of ataxia.
Interestingly, inactivation of G9a has been demonstrated to result in
resistance to RNA viruses by increasing type I interferon production
[24]. B19, via its nonstructural protein NS1 blocks this interferon
signaling so that it theoretically could still play a role in human ataxia.

Final Remarks
Animal model data is highly supportive of parvoviruses as causes of

cerebellar disease, including ataxia. B19 has been detected in a large-
scale study in the human cerebellum. There are still less than a dozen
human case reports associating B19 and ataxia. The mechanism of
B19-induced ataxia is likely direct cytotoxicity of developing cerebellar
neurons, but an epigenetic or other role could contribute especially
once beyond early neurodevelopment. Much more work needs to be
done to “catch up” with the animal data. However, the basic science
data is very compelling. Gathering further case studies/series as well as
prospective clinical studies on ataxia and B19 are highly warranted.
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