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Abstract

Background: Aspartyl-Asparaginyl-Β-Hydroxylase (ASPH) is a downstream target of insulin and IGF signaling
and promotes cell motility for liver remodeling and repair. ASPH functions in part by activating Notch and HIF-1α.
PPAR agonists can ameliorate steatohepatitis, hepatic insulin resistance, and reduced ASPH expression in
experimental alcoholic liver disease. Herein, we examine the effects of PPAR-α, PPAR-δ, and PPAR-γ agonists on
Notch and HIF-1α signaling.

Methods: Long Evans rats were chronically fed control or ethanol-containing diets and treated with vehicle, or a
PPAR-α, PPAR-δ, or PPAR-γ agonist. ASPH, Notch, and HIF-1α-related genes and proteins were measured in liver.

Results: ASPH, Notch, and HIF-1α signaling genes and/or proteins were inhibited by chronic ethanol feeding.
PPAR-δ and/or PPAR-γ agonists normalized ASPH, HIF-1α, and PCNA protein in ethanol-exposed livers. In
contrast, Notch signaling through HES-1 was not restored.

Conclusion: Therapeutic effects of PPAR-δ and PPAR-γ agonists in alcoholic liver disease are mediated by
post-translational mechanisms that bolster ASPH-HIF-1α signaling. Alternative strategies are needed to circumvent
ethanol-mediated uncoupling of cross-talk among insulin/IGF-1/ASPH-Notch networks.

Keywords: Alcoholic liver disease; Aspartyl-Asparaginyl-Β-
Hydroxylase; Notch; PPAR agonists; HIF-1α

Introduction
Alcohol abuse is a leading cause of liver-related morbidity and

mortality [1,2]. Excessive chronic or binge alcohol consumption is a
major risk factor for progressive Alcoholic Liver Disease (ALD), which
is mediated by combined effects of insulin and Insulin-Like Growth
Factor (IGF) resistance [3-5], inflammation [6,7], mitochondrial
dysfunction, and oxidative and Endoplasmic Reticulum (ER) stress
[8,9]. In the most severe cases, ALD can advance to cirrhosis with
attendant liver failure and/or hepatocellular carcinoma [10]. Ethanol
disrupts insulin/IGF receptor binding and tyrosine kinase activation,
tyrosine phosphorylation of Insulin Receptor Substrate-1 (IRS-1), and
downstream signaling through mitogen-activated protein kinase,
which promotes liver growth and repair, and Phosphoinositide-3
Kinase (PI3K), which drives metabolism, cell survival, and motility.
Ethanol further impairs insulin/IGF signaling by increasing expression
of negative regulators of PI3K-Akt [11].

Aspartyl-Asparaginyl-Β-Hydroxylase (ASPH) is a downstream
target of insulin/IGF signaling, and has functional roles in cell
adhesion and motility [12-14]. ASPH is a ~86 kD Type 2
transmembrane protein located in the Endoplasmic Reticulum (ER)
[15,16]. Intracellularly, ASPH is physiologically cleaved yielding N-
terminal and C-terminal fragments. The N-terminal fragment is
virtually identical to Humbug, a truncated isoform that supports cell

adhesion through regulation of Ca2+ flux from intracellular stores
[17,18]. The C-terminal fragment contains a catalytic domain that
promotes cell adhesion and motility by hydroxylating Epidermal
Growth Factor (EGF)-like domains of Notch signaling proteins
[13,14,19-22].

Notch signaling proteins, Notch-1 and Jagged-1, have demonstrated
roles in cell migration, differentiation, and adhesion [23]. ASPH
activates their networks by hydroxylating Notch-1 and, its ligand,
Jagged-1 at their EGF-like domains. Binding of Jagged (or Delta-like
family of proteins) to Notch’s extracellular domain triggers two
sequential cleavage events. The ectodomain of Jagged is cleaved by an
A Disintegrin and Metalloprotease (ADAM) 17-like activity [24,25].
The second cleavage event occurs within the transmembrane domain
of Notch, and is triggered by a complex formed between γ-secretase
and prenisilin proteases [24]. These events cause the Notch
Intracellular Domain (NID) to translocate from the plasma membrane
to the nucleus where the NID removes co-repressors and recruits
transcriptional co-activators to specific DNA sequences. The end
results include transcriptional activation of target genes such as hairy
and enhancer of split-1 (HES-1) and HES-related proteins [26,27].
These networks are important for maintaining the integrity of insulin/
IGF, ASPH, and Notch cross-talk needed to promote cell migration for
liver remodeling and regeneration.

Peroxisome Proliferator Activated Receptors (PPARs) are
transcription factors and nuclear receptors that heterodimerize with
retinoid x receptors and bind to peroxisome proliferator response
elements throughout the genome. Complex binding activates
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transcription of genes involved in various biological functions,
including lipid metabolism [28,29]. PPARs are expressed as three
isoforms: PPAR-α, PPAR-δ, and PPAR-γ. PPAR-α plays an essential
role in β-oxidation of fatty acids, and is expressed in liver as well as
kidney, heart, skeletal muscle, and brown adipose tissue [30]. PPAR-α
is naturally activated by polyunsaturated fatty acids and fibrates.
PPAR-δ regulates lipid catabolism and oxidative phosphorylation, and
is mainly expressed in muscle, kidney, heart, and liver [31]. Natural
ligands include saturated and unsaturated fatty acids. PPAR-γ
promotes adipocyte differentiation and has a role in lipogenesis [32].
PPAR-γ is primarily expressed in adipose tissue and activated by
polyunsaturated fatty acids [33]. Thiazolidinediones, a class of
synthetic PPAR-γ agonists with insulin-sensitizing properties, have
been approved by the Food and Drug Administration for treatment of
type 2 diabetes [34].

We previously showed PPAR-δ and PPAR-γ agonists can
ameliorate ethanol-induced hepatic insulin resistance and
correspondingly restore liver structure [35-37] while normalizing
ASPH expression. Since ASPH promotes cell migration via activation
of Notch [19,22,38,39], we extended our studies by evaluating the
effects of different PPAR agonists on ASPH and Notch signaling genes
and proteins to determine if restored hepatic architecture was linked
to the re-activation of Notch networks. In addition, we examined the
effects of PPAR agonist treatments on hypoxia inducible factor-1α
(HIF-1α), a positive regulator of ASPH, and Proliferating Cell Nuclear
Antigen (PCNA), which mediates hepatocellular proliferation.

Materials and Methods

Reagents
Long Evans rats were purchased from Harlan Sprague-Dawley

(Indianapolis, IN, USA). Liquid diets were from Bio Serv (Frenchtown,
NJ, USA). PPAR-α (GW7647, 10 nM), PPAR-δ (L-165,041, 10 nM), or
PPAR-γ (Fmoc-Leu, 20 μM) agonists were from Cal Biochem
(Carlsbad, CA, USA). Bicinchoninic Assay (BCA) reagent kit was
purchased from Pierce (Rockford, IL, USA), and reagents for duplex
Enzyme-Linked Immunosorbent (ELISA) assays, including Amplex
ultrared reagent and 4-Methylumbelliferyl Phosphate (MUP) were
purchased from Invitrogen (Carlsbad, CA, USA). 96-well Fluoro
Nuncmaxisorp and optiplates were purchased from Thermo Scientific
(Rochester, NY, USA). Rabbit Polyclonal Antibody to Large Acidic
Ribosomal Protein (RPLPO) was from Proteintech (Chicago, IL,
USA). Alkaline phosphatase-conjugated streptavidin was from Vector
Laboratories (Burlingame, CA, USA). The Spectra Max M5 Microplate
Reader was from Molecular Dynamics (Sunnyvale, CA, USA). Graph
Pad Prism 6 software was purchased from Graph Pad Software (San
Diego, CA, USA).

Chronic ethanol exposure model
Adult (~220-250 g) male rats were fed with isocaloric liquid diets

containing 0% (control) or 37% ethanol (9.2% v/v) for 8 weeks
[35,40,41]. From Week 2 through the remainder of the experiment,
rats in each group were given twice weekly intraperitoneal (i.p)
injections of vehicle (saline), a PPAR-α (GW7647; 2.5 μg/Kg), a PPAR-
δ (L-160,043; 2 μg/Kg), or a PPAR-γ (Fmoc-Leu; 1.8 mg/Kg) agonist.
The PPAR doses, route of administration, and frequency were based
on an established protocol [35,40] [7,36]. Upon sacrifice, portions of
fresh liver (N=8/group) were frozen, and stored at -80°C. Rats were
monitored daily to ensure proper nutritional intake and maintenance

of body weight. The rats lived under humane conditions with 12-hour
light/dark cycles, and free access to food. All experiments were
conducted according to guidelines established by the National
Institutes of Health and approved by the institutional Animal Care
and Use Committee at the Lifespan-Rhode Island Hospital.

Gene expression studies
Total RNA was isolated from liver with the EZ1 RNA Universal

Tissue Kit and the BIO Robot EZ1 (Qiagen Inc., Valencia, CA, USA).
RNA was reverse transcribed with random oligonucleotide primers
and the AMV First Strand cDNA synthesis kit. The cDNAs were used
to measure gene expression by qPCR analysis with gene-specific
primers [39]. Primers were designed using Mac Vector 10 software
(Mac Vector, Inc., Cary, NC, USA) and target specificity was verified
using NCBI-BLAST (Basic Local Alignment Search Tool). The Master
ep-Real plex instrument and software (Eppendorf AG, Hamburg,
Germany) were used to detect amplified signals from triplicate
reactions. Using the average CT values, the ng levels of mRNA or 18S
rRNA were calculated from standard curves. Relative mRNA
abundance was calculated from the ng ratios of mRNA to 18S rRNA in
the same samples.

Duplex Enzyme-Linked Immunosorbent Assay (ELISA)
Liver tissue was homogenized in buffer (50 mM Tris pH 7.5, 150

Mm NaCl, 5 mM ethylene diaminetetra acetic acid pH 8.0, 50
mMNaF, 0.1% triton x-100) containing protease and phosphatase
inhibitors [35]. Homogenates were centrifuged and clarified
supernatants were used to measure immunoreactivity by ELISA.
Protein concentrations were measured with the BCA assay.
Immunoreactivity was measured by a duplex ELISA as previously
described [42].

In brief, sample aliquots containing 100 ng proteins in 50 μl were
adsorbed to the bottoms of maxisorp 96-well plates by overnight
incubation, and then coated with 1% bovine serum albumin in TRIS
buffered saline (TBS-BSA) to minimize non-specific binding. Primary
antibodies (0.5-1 µg/ml) were applied overnight at 4°C, and
immunoreactivity was detected with horseradish peroxidase-
conjugated antibodies and the Amplex Ultra Red soluble fluorophore
(Ex 530 nm/Em 590 nm). Subsequently, the samples were incubated
with biotinylated RPLPO and immunoreactivity was detected with
streptavidin-conjugated alkaline phosphatase and 4-MUP fluorophore
(Ex 360 nm/Em 460 nm). Fluorescence was detected with the
SpectraMax M5 microplate reader. Non-specific binding was assessed
with parallel incubations in which the primary or secondary antibody
was omitted. The calculated ratios of target protein/RPLPO
fluorescence were used for inter-group statistical comparisons. All
assays included least 6 biological replicates, in 4 technical replicates.

Statistical analysis
Inter-group statistical comparisons were made by two-way Analyses

Of Variance (ANOVA) and the Fisher posttest using Graph Pad Prism
6 software.

Results
Effects of Ethanol and PPAR Agonist Treatments on ASPH-Notch

Pathway Genes: Two-way ANOVA tests demonstrated significant
effects of ethanol on ASPH, Jagged-1, and HES-1 expression,
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significant effects of PPAR agonist treatments on ASPH, HES-1 and
HIF-1α expression, and ethanol x PPAR interactive effects on ASPH,
HES-1, and FIH expression (Table 1). In contrast, no significant
ethanol or PPAR agonist effects were observed with respect to
Notch-1.

 Ethanol Effect PPAR Agonist
Effect

Ethanol x PPAR
Effect

mRNA
F-
Rati
o

P-Value F-Ratio P-Value F-Ratio P-Value

ASPH 27.8
6 <0.0001 6.507 0.001 3.902 0.015

Notch-1 0.64
1 N.S. 1.061 N.S. 0.101 N.S.

Jagged-1 26.5
5 <0.0001 1.703 N.S. 0.649 N.S.

HES-1 20.0
1 <0.0001 3.993 0.014 11.92 <0.0001

FIH 1.9 N.S. 1.94 N.S. 9.288 <0.0001

HIF-1α 0.40
8 N.S. 3.224 0.032 1.869 N.S.

Table 1: PPAR-Agonist Treatment Effects on Notch Pathway Gene
Expression in Experimental Chronic Alcohol-Induced Liver Injury:
Two-Way ANOVA Summary. Adult Long Evans rats were chronically
fed isocaloric control or ethanol-containing liquid diets. Rats in each
group were also treated with vehicle (saline) or a PPAR agonist. Gene
expression data were analyzed by two-way ANOVA and the Fisher
multiple comparison posttest. See text for abbreviations.

ASPH expression was significantly reduced in vehicle-treated,
ethanol exposed relative to control livers (P<0.0001). Among controls,
PPAR-δ or PPAR-γ agonist treatments significantly reduced hepatic
ASPH expression relative to vehicle (Figure 1A), whereas in the
ethanol groups, PPAR agonist treatments had modest (PPAR-α) or no
appreciable effects on hepatic ASPH expression. Consequently, the
PPAR agonist treatments reduced (PPAR-α, PPAR-δ) or abolished
(PPAR-γ) the magnitude of inter-group differences in hepatic ASPH
mRNA due to inhibition of ASPH expression in controls (Figure 1A).

Notch-1 expression was similar for control and ethanol exposed
livers, and no significant differences occurred with respect to PPAR
agonist treatments (Figure 1B).

Jagged-1 mRNA expression was significantly reduced in livers of
ethanol-fed, vehicle-, PPAR-α, or PPAR-γ agonist treated rats relative
to corresponding controls (Figure 1C). In contrast, the PPAR-δ
agonist increased hepatic expression of Jagged-1 in the ethanol group,
rendering the levels similar to control. Therefore, the PPAR-δ agonist
treatments rescued ethanol-mediated inhibition of Jagged-1
expression.

HES-1 expression was similar in vehicle-treated control and
ethanol-exposed livers. However, treatment with the PPAR-α or
PPAR-δ agonist selectively increased HES-1 in control but not
ethanol-exposed livers, rendering the inter-group differences highly
statistically significant. In contrast, hepatic HES-1 mRNA levels were
unaffected by the PPAR-γ agonist treatments (Figure 1D).

Hepatic FIH expression was significantly higher in vehicle-treated,
ethanol-fed relative to control rats (Figure 1E). In controls, the PPAR-
α, PPAR-δ, and PPAR-γ agonists similarly increased hepatic FIH
expression, whereas in ethanol-fed rats, the PPAR-α and PPAR-δ
agonists had no significant effect on hepatic FIH, and the PPAR-γ
agonist significantly reduced FIH expression (P<0.01).

Although hepatic HIF-1α expression varied within group, between-
group differences were not statistically significant, i.e. control and
ethanol-exposed livers within each treatment group had similar mean
levels of HIF-1α mRNA. However, among controls, the PPAR-α
agonist increased hepatic HIF-1α relative to the effects of PPAR-δ
(P<0.01) and PPAR-γ (P<0.05) agonists (Figure 1F).

Figure 1: Effects of PPAR agonist treatments on hepatic expression
of ASPH and Notch-pathway genes in experimental alcohol-related
liver disease. Adult Long Evans rats were fed with isocaloric control
or ethanol-containing liquid diets for 6 weeks, and treated with
vehicle, or a PPAR-α, PPAR-δ, or PPAR-γ agonist by i.p. injection,
twice weekly for the last 4 weeks of the feeding regimen. Liver RNA
was reverse transcribed, and the resulting cDNAs were used in
QPCR reactions to measure: A) ASPH, B) Notch-1, C) Jagged-1, D)
HES-1, E) FIH, and F) HIF-1α. Gene expression was normalized to
18S rRNA measured in the same samples. Box plots depict the
means (horizontal bars), 95% confidence interval limits (upper and
lower boundaries of the boxes), and ranges (stems). Inter-group
comparisons were made by two-way ANOVA (Table 1) with the
Fisher posttest.

Differential PPAR agonist and ethanol effects on hepatic
ASPH-Notch signaling proteins

Duplex ELISAs using the A85G6 and A85E6 monoclonal antibodies
were respectively used to detect epitopes within the C-terminus and
N-terminus of ASPH. Because the N-terminus of ASPH is nearly

Citation: Borgas DL, Deochand C, Tong M, de la Monte SM (2014) PPAR Agonist Effects on Notch Signaling Mediators in Experimental Chronic
Alcohol-Induced Steatohepatitis. Biochem Physiol 3: 145. doi:10.4172/2168-9652.1000145

Page 3 of 7

Biochem Physiol
ISSN:2168-9652 BCP, an open access journal

Volume 3 • Issue 4 • 1000145



identical to full-length Humbug, A85E6 also detects Humbug, whereas
A85G6 is specific for ASPH. In addition, we used duplex ELISAs to
measure Notch-1, Jagged-1, HIF-1α, and PCNA (Table 2 and Figure
2).

Figure 2: Effects of chronic ethanol exposure and PPAR agonist
treatments on ASPH and Notch signaling molecules in liver. Rats
chronically maintained on control or ethanol-containing (37%)
liquid diets were treated with vehicle, or a PPAR-α, PPAR-δ, or
PPAR-γ agonist. Livers homogenates were used to measure
immunoreactivity to: ASPH using the A) A85E6 or B) A85G6
monoclonal antibodies, C) Notch-1, D) Jagged-1, E) HIF-1α), and
F) proliferating cell nuclear antigen (PCNA) by duplex ELISAs.
Results were normalized to levels of large ribosomal protein
(RPLPO) measured in the same wells. Box plots depict the means
(horizontal bars), 95% confidence interval limits (upper and lower
boundaries of the boxes), and ranges (stems). Inter-group
comparisons were made by two-way ANOVA (Table 2) with the
Fisher post test.

Two- way ANOVA tests demonstrated significant ethanol effects on
A85E6, Notch-1, and PCNA, and ethanol-driven statistical trends for
HIF-1α expression (Table 2). Significant PPAR agonist effects
occurred with respect to Jagged-1 and HIF-1α and a trend was
observed with respect to A85G6 immunoreactivity. Significant ethanol
x PPAR agonist interactive effects were observed with respect to
A85G6, A85E6, Jagged-1, and HIF-1α, while trend effects occurred in
relation to Notch-1 and PCNA expression (Table 2).

A85E6: Hepatic A85E6 immunoreactivity was somewhat reduced
by PPAR agonist treatments, particularly PPAR-δ. Ethanol had no
effect on hepatic A85E6 immunoreactivity, but treatment with the
PPAR-δ agonist significantly increased and A85E6 immunoreactivity

relative to control (Figure 2A).In contrast, PPAR-δ agonist treatments
did not enhance A85E6 immunoreactivity relative to vehicle in
ethanol-exposed livers.

A85G6: Among controls, A85G6 immunoreactivity was highest in
the vehicle-treated group, and significantly suppressed (P<0.05-
P<0.01) by the PPAR agonist treatments (Figure 2D). Ethanol+vehicle
significantly reduced A85G6 immunoreactivity relative to control.
PPAR-α and PPAR-δ agonist treatments had no significant effect on
A85G6/ASPH expression, and because the levels were suppressed in
corresponding controls, those inter-group differences were not
statistically significant. In contrast, the PPAR-δ agonist significantly
increased A85G6 immunoreactivity in the ethanol group, rendering
the difference statistically significant from the paired control group.

Notch-1: Notch-1 immunoreactivity was highest in the vehicle-
treated control livers. All 3 PPAR agonist treatments significantly
reduced Notch-1 expression among controls (P<0.05) (Figure 2B).
Chronic ethanol feeding significantly inhibited Notch-1 expression,
and that effect was not rescued by any of the PPAR agonist treatments.
However, due to greater degrees of PPAR-δ agonist suppression of
Notch-1 expression in controls, the inter-group differences were
statistically significant.

 Ethanol Effect PPAR Agonist Ethanol x
Agonist

Protein F-
Ratio

P-
Value

F-
Ratio

P-
Value

F-
Ratio P-Value

ASPH/A85G6 0.37 N.S. 2.67 0.06 3.45 0.025

ASPH+Humbug/A85E6 6.65 0.013 0.768 N.S. 3.6 0.021

Notch-1 9.07 0.004 1.29 N.S. 2.33 0.089

Jagged-1 1.78 N.S. 4 0.014 4.05 0.013

HIF-1α 3.61 0.065 3.24 0.032 15.21 <0.0001

PCNA 9.07 0.004 1.29 N.S. 2.33 0.089

Table 2: PPAR-Agonist Treatment Effects on Notch Pathway Protein
Expression in Experimental Chronic Alcohol-Induced Liver Injury:
Two-Way ANOVA Summary. Adult Long Evans rats were chronically
fed isocaloric control or ethanol-containing liquid diets. Rats in each
group were also treated with vehicle (saline) or a PPAR agonist.
Protein expression data were analyzed by two-way ANOVA and the
Fisher multiple comparison posttest. See text for abbreviations.

Jagged-1: In control rats, Jagged-1 expression was highest in
vehicle-treated rats as its expression was broadly inhibited by the
PPAR agonists (all P<0.05) (Figure 2E). Jagged-1 expression was
significantly reduced by ethanol, and further lowered by treatment
with the PPAR-α agonist. In contrast, the PPAR-δ agonist slightly
increased Jagged-1 immunoreactivity, but the suppressive effects in
controls rendered the inter-group difference statistically significant.
The PPAR-γ agonist had no effect on Jagged-1 immunoreactivity in
ethanol-exposed livers, but the suppressive responses in controls
caused the levels to be similar.

HIF-1α: Among controls, HIF-1α protein expression was highest
with vehicle treatment, and relatively suppressed by the PPAR agonists
(P<0.005) (Figure 2C). In the ethanol groups, vehicle or PPAR-α
agonist treatment resulted in similarly low levels of HIF-1α
immunoreactivity, whereas treatment with the PPAR-δ or PPAR-γ
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agonist nearly normalized hepatic HIF-1α expression. Due to their
suppressive effects in controls, the levels of HIF-1α were significantly
higher in the PPAR-δ and PPAR-γ agonist treated, ethanol exposed
livers relative to corresponding controls.

PCNA: Hepatic PCNA expression was similar for control and
ethanol exposed vehicle-treated rats (Figure 2F). Among controls,
PPAR agonist treatments caused modest (non-significant) reductions
in PCNA expression. Similarly, the PPAR-α agonist modestly reduced
PCNA expression in ethanol-exposed livers. In contrast, the PPAR-δ
and PPAR-γ agonist treatments significantly increased PCNA
expression in the ethanol-exposed relative to corresponding controls,
but not relative to ethanol+vehicle. Again, those inter-group
differences were effectuated by the combined stimulatory responses in
the ethanol groups and suppressive responses among controls.

Discussion
Progressive alcoholic liver disease is partly mediated by sustained

insulin resistance [43-45] because ethanol disrupts insulin/IGF
signaling at various steps in the cascade. Moreover, ethanol-mediated
perturbations in membrane lipid composition impair insulin receptor
binding and receptor tyrosine kinase activation [11], which are the
most proximal steps in the pathway. Ethanol’s inhibition of growth,
survival, and metabolic functions is linked to reduced IRS-1
phosphorylation and attendant activation of PI3K-Akt [4,5,41,46,47],
together with increased expression and activation of negative
regulators of PI3K-Akt, e.g. PTEN [48,49]. Previous studies tested the
hypothesis that hepatic insulin and IGF-1 resistance are pivotal in the
pathogenesis of ALD by using insulin sensitizers to abrogate the
adverse effects of ethanol. Those studies showed that PPAR-δ more
than PPAR-γ agonists can restore ethanol-impaired insulin/IGF
signaling and resolve many aspects of ALD histo- and ultrastructural
pathology [35,36,40,50]. Importantly, these therapeutic responses were
associated with increased expression of the insulin/IGF responsive
ASPH, which is inhibited by ethanol [35]. We postulated that the
PPAR agonist improvements in hepatic function and structure were
likely mediated by ASPH’s positive effects on cell motility and
adhesion, which are needed for hepatocellular remodeling after injury
[21,22,39].

ASPH’s functions are likely due, in part, to the activation of Notch
signaling networks since: 1) ASPH physically interacts with Notch-1
and its natural ligand, Jagged-1 [38], which have consensus sequences
for ASPH hydroxylation [51]; 2) Notch-1 and Jagged-1 have
established roles in cell adhesion and migration [52]; and 3) high levels
of ASPH increase Notch-1, Jagged-1, and HES-1 expression, while
reduced levels of ASPH have opposite effects [19,22]. Furthermore,
Insulin-IGF-1/ASPH/Notch expression and signaling have been linked
to HIF-1α expression and function [19,22,39]. Of further note is that
FIH negatively regulates HIF-1α via hydroxylation [53], raising the
possibility that hydroxylating networks are important regulators of
liver structure and function. The present work extends our
investigations into the uncoupling of cross-talk mechanisms among
insulin/IGF-ASPH, Notch, and HIF-1α in chronic ALD, and the
potential utility of PPAR agonists for restoring the integrity of these
signaling networks.

The qRT-PCR analyses demonstrated ethanol-inhibition of ASPH
and Jagged-1 expression, and an ethanol-mediated increase in FIH. In
contrast, the mRNA levels of Notch-1, HES-1, and HIF-1α were
similar in control and ethanol-exposed livers. In control livers, the

main effects of PPAR-δ and PPAR-α agonist treatments were to down-
regulate ASPH and stimulate HES-1 and FIH, whereas in the ethanol
group, PPAR agonist treatments had almost no effect on mRNA levels
corresponding to ASPH, the Notch pathway, or HIF-1α/FIH.
Therefore, nearly all of the “normalizing” effects of PPAR agonist
treatments on mRNA expression were due to responses in control
livers or broadening of statistical variance, causing the means to
overlap. More important, the agonist stimulation of HES-1 and FIH,
and inhibition of ASPH reflect coupling of insulin responsive genes
and mechanisms to Notch and HIF-1α networks in control livers, but
general uncoupling of such responses in chronic ethanol-exposed
livers. Therefore, any rescue effects of PPAR agonist insulin sensitizing
agents with respect to ALD are not likely to be effectuated by changes
in gene expression within these pathways. Instead, alternative
mechanisms must be investigated.

The protein-based studies confirmed previous findings with respect
to ethanol-inhibition of ASPH and Humbug, and further
demonstrated ethanol inhibition of Notch-1, Jagged-1, and HIF-1α. It
is noteworthy that in control livers, the PPAR agonist treatment either
had modest or suppressive effects on proteins studied, whereas in the
ethanol-exposed livers, stimulatory/supportive effects occurred mainly
with respect to the PPAR-δ and PPAR-γ agonists, whereas the PPAR-α
agonist appeared to exacerbate the trends of ethanol+vehicle. Since
these responses were not always associated with similar changes
(magnitude or direction) in gene expression, post-transcriptional
mechanisms were likely involved. Enhanced insulin/IGF-1 signaling
through PI3K-Akt, together with the anti-oxidant effects of PPAR
agonists, serves to reduce GSK-3β activity, and GSK-3β
phosphorylation decreases ASPH protein expression [54]. Therefore,
the PPAR agonist-mediated increases in ASPH/Humbug
immunoreactivity could have been mediated by reductions in the
levels of GSK-3β activity and ASPH/Humbug phosphorylation.

PPAR agonist effects on Notch-1 and Jagged-1 mRNAs were either
neutral or slightly inhibitory in control and ethanol-exposed livers.
However, at the protein level, PPAR agonists had decisively inhibitory
effects on Notch-1 and Jagged-1 in controls, and varied effects in
ethanol-exposed livers. With ethanol exposure, Notch-1 and Jagged-1
proteins were further suppressed by the PPAR-α agonist, and
supported or slightly stimulated by the PPAR-δ and PPAR-γ agonists.
Overall, it seems unlikely that these relatively modest changes in
Notch-1 and Jagged-1 expression would account for the considerable
therapeutic responses observed in previous studies. Instead, we
postulate that the normalization of ASPH expression is critical in
ethanol-exposed livers.

In control livers, the PPAR-α and PPAR-δ agonists enhanced
expression of HES-1, which is consistent with the concept that insulin/
IGF-1 signaling pathways cross-talk and activate Notch networks.
However, chronic ethanol exposure abrogated this response. One
interpretation of these findings is that ethanol-induced hepatic insulin
resistance uncouples insulin/IGF-1/ASPH/Notch-1 cross-talk
mechanisms needed to stimulate expression of target genes.

In control livers, FIH mRNA and HIF-1α protein were reciprocally
modulated by PPAR agonist treatments, such that HIF-1α expression
and activity were inhibited relative to vehicle treatment. In addition,
HIF-1α mRNA was inhibited by PPAR-δ and PPAR-γ treatments. The
significance of these responses is not entirely clear; nonetheless they
do support the concept that HIF-1α expression and signaling cross-
talk through insulin regulated networks. Ethanol reciprocally inhibited
HIF-1α protein and stimulated FIH mRNA. Although FIH and
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HIF-1α mRNAs were unaffected by the PPAR agonist treatments, at
the protein level, HIF-1α and PCNA protein were both stimulated by
PPAR-δ and PPAR-γ agonists. HIF-1α’s role in cell motility/
migration, its regulation by insulin/IGF, and its cross-talk with ASPH
have been well described [39,55,56]. Therefore, ethanol-mediated
suppression of HIF-1α protein corresponds with its inhibitory effects
on insulin/IGF-1 stimulated ASPH and cell motility [14,19,54,57]. The
therapeutic rescue effectuated by PPAR-δ and PPAR-γ agonists in
ALD [35,36,40] correlate with the increases in ASPH, HIF-1α, and
PCNA protein expression rather than Notch pathway activation. This
suggests that insulin sensitizer treatments do not reverse ethanol-
mediated uncoupling of the insulin/ASPH/Notch pathway, but instead
utilize alternative mechanisms via HIF-1α to restore liver function.
These finding offer new approaches for treating chronic ALD. Future
studies will extend this work by identifying additional pathways that
cross-talk with insulin/IGF-1/IRS-1 to modulate cell motility and
remodeling, e.g. Wnt/β-catenin [58-60], and also are responsive to
PPAR agonists.
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