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Abstract
Significance: We present a innovative, specimen-free diagnostic platform that can immediately detect both a metabolite (glucose) or an 
infection (COVID-19), by non-invasively using Raman spectroscopy and machine learning.

Aim: Current diagnostic testing for infections and glucose monitoring requires specimens, disease specific reagents, processing and 
increases environmental waste. We propose a new hardware-software paradigm by designing and constructing a finger-scanning, hardware 
device to acquire Raman spectroscopy readouts and, by varying a machine learning algorithm to interpret the data, allows for diverse 
diagnoses.

Approach: 455 patients were enrolled prospectively in the COVID-19 study. 148 tested positive and 307 tested negative on nasal PCR 
testing done concurrently with testing using our viral detector. The tests were performed on both outpatients (N=382) and inpatients (N=73) 
at Holy Name Medical Center in Teaneck, NJ between June, 2021 and August, 2022. Patients’ fingers were scanned using an 830 nm 
Raman System and then, using machine learning, processed to provide an immediate result.

In a separate study between April, 2023 and August, 2023 measurements using the same device and scanning a finger were used to 
detect blood glucose levels. Using a Dexcom sensor and an Accu-Chek device as references, a cross-validation based regression of 205 
observations of blood glucose was performed with a machine learning algorithm.

Results: In a five-fold cross-validation analysis (including asymptomatic patients), a machine learning classifier using the Raman spectra as 
input achieved a specificity for COVID-19 of 0.837 at a sensitivity of 0.80 and an Area Under Receiver Operating Curve (AUROC) of 0.896. 
However, when the data were split by time, with training data consisting of observations before 1st July, 2022 and test data consisting of 
observations after it, the model achieved an AUROC of 0.67, with 0.863 sensitivity at a specificity of 0.517. This decrease in AUROC may 
be due to substantial domain shift as the virus evolves. A similar five-fold cross validation analysis of Raman glucose detection produces an 
Area Under Precision-Recall Curve (AUPR) of 0.58.

Conclusion: The combination of Raman spectroscopy, Artificial Intelligence/Machine Learning (AI/ML) and our patient-interface admitting 
only a patient’s finger and using no specimen, offers unprecedented flexibility in introducing new diagnostic tests or adapting existing ones. 
As the ML algorithm can be iteratively retrained with new data and the software deployed to field devices remotely, it promises to be a 
valuable tool for detecting rapidly emerging infectious outbreaks, as well as disease specific biomarkers, such as glucose.
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Introduction
The prevailing approach to diagnostic testing requires taking 

specimens and relies on assays customized to specific biomolecules. For 
instance, rapid antigen tests and PCR tests rely on specimens from nasal 
swabs and hemoglobin or glucose measurements require biochemical 
tests on blood or urine samples. Each new diagnostic test thus requires 
a custom-designed assay, with its attendant challenges (e.g., ramping 
up availability during pandemics, or democratizing access to a diverse 
population). This is also a problem with infectious diseases where rapid 
evolution of the pathogen might make existing assays obsolete, wasting 
limited production resources and slowing down public health response 
due to delays in designing, developing, manufacturing and distributing 
new test kits.

The last decade of methodological advances in molecular and 
cellular biology suggest an alternative paradigm: A hardware platform 
capable of taking multiple, general-purpose measurements of the 
system under study, followed by computational analysis to extract 
the biological covariates of interest. For instance, this is broadly the 
approach followed in single-cell genomic assays. The power of this 
approach lies in a careful combination of broad, yet sensitive assays 
paired with custom-designed and calibrated computational analysis. 
We hypothesize that a similar approach could also be transformative 

in clinical diagnostics, with a no specimen platform that could provide 
accurate readouts for a variety of diagnostic tasks while being accessible 
in a point-of-care setting. Crucially, adapting to a pathogenic variant or 
even an entirely different disease would simply be a matter of loading 
new software on the device (or on the cloud), making it possible to 
introduce new tests much more efficaciously.

We propose the use of Raman spectroscopy, introducing a novel 
pulse oximeter-like device to obtain readouts non-invasively (US 
patent # 11452454; 11304605) and analyze the resulting Raman spectra 
with machine learning techniques trained to detect an infectious state 
or a biochemical metabolite. Raman spectroscopy detects precise 
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vibrational modes of molecules in organic liquids and, as such, 
provides a physicochemical fingerprint of molecules. The instrumental 
setup typically includes a light source, such as a laser, a spectrograph 
to collect and disperse the scattered light by Fourier Transform 
methods, a detector, such as a Charge-Coupled Device (CCD) and 
a filter to separate the Raman scattering from other light signals. We 
chose Raman spectroscopy over other spectroscopic methods, as the 
Raman technique offers several advantages. Compared with infrared 
spectroscopy, near-infrared, mid-infrared and far-infrared, Raman 
has the advantage of being nondestructive, fast to acquire and capable 
of providing information at the molecular level. Raman also analyzes 
samples in aqueous solutions, since water produces a weak Raman 
scattering, especially important in the biochemical field studying the 
ionization behavior, pH change, or amino acid configuration [1].

We hypothesized that Raman spectroscopy readouts of an 
individual’s blood chemistry, performed non-invasively by scanning 
one’s finger in a form similar to a pulse oximeter, could provide the raw 
information needed to diagnose a variety of conditions. For instance, 
it could be directly used to assess the blood metabolic profile of the 
individual. Moreover, we reasoned that even infections like COVID-19 
could be indirectly measured, as the combination of infection-specific 
antigen and immune response would leave molecular traces captured 
in the spectrum.

We pair such a hardware platform with a powerful yet flexible ML 
framework for interpreting the raw data. Previously, the use of support 
vector machines with Raman spectroscopy has been demonstrated for 
the classification of breast cancer tissue [2]. In the COVID-19 setting, 
detection can be posed as a classification problem given the Raman 
spectrum, while blood glucose measurement can be a regression 
problem. Essentially, any new assay requires only the training of a 
new machine learning module, trained by paired measurements of the 
Raman spectrum and ground-truth data, illustrating the flexibility of 
the device for various normal and disease states. Here, we demonstrate 
the feasibility of such an approach by designing, constructing 
and operating such a device and applying it to predict COVID-19 
infection status and blood glucose levels in cross-validation settings. 
In this feasibility study, we sought to show that a machine learning 
algorithm can indeed recover the underlying ground-truth from the 
Raman spectra. Our algorithms were trained on a limited amount of 
ground-truth training data for both COVID-19 or glucose tests and 
demonstrate substantial accuracy in predicting COVID-19 infection 
status or high glucose levels. For instance, on COVID-19, our model 
achieves a cross-validation sensitivity of 80% with a specificity of 83.7%. 
In comparison, sensitivities for current COVID-19 antigen tests are 
reported to range from 63.9%-70.2% [3,4]. With more extensive data 
collection for training the machine learning algorithms, we expect the 
accuracy of the platform to further improve.

Our work addresses a pressing gap in the availability of diagnostic 
frameworks that can serve as convenient, non-invasive point-of-care 
screening choices and do not require expertise in sample handling. In 
comparison, testing for the presence of COVID-19 infection and blood 
glucose levels with currently available tests requires a nasal swab, sputum 
or blood specimen. While some previous work has demonstrated the 
feasibility of combining ML with Raman spectroscopy, it has been 
used with patient blood, sputum, nasal or tissue samples [2,5-7]. In 
contrast, our platform’s innovation includes not requiring any bodily 
fluid sample, features the novel patient interface form-factor for Raman 
spectroscopy and AI/ML.

We formulated a hypothesis that COVID-19 could be detected 
transcutaneously in a finger in a manner similar to pulse oximetry. 

The feasibility of using Raman spectroscopy to detect the unique 
spectrum of SARS-CoV-2, as well as other viruses and molecules, using 
a specimen has previously been demonstrated [8-10]. For instance, a 
Raman-based classification model to discriminate the signal in saliva 
of COVID-19 patients has been described, with the study noting peaks 
that are attributable to the tryptophan and phenylalanine signal and 
to the C-N and C-C stretching [11]. Aromatic amino acids, including 
tryptophan, play an important role in the spike protein structure.

One of our key conceptual advances is to use Raman spectroscopy to 
detect COVID-19 non-invasively and transcutaneously from the blood. 
This would side-step the need for collecting specimens, unlocking 
unprecedented ease-of-use. We set out to target the entire mixture of 
blood components that is typically seen in COVID-19. Our effort is 
motivated by several reports of the systemic effects and sequelae of 
COVID-19, involving the heart, liver, clotting system, inflammatory 
system, intestines, kidney and brain, suggesting that a combination of 
COVID-19 molecular markers, direct or indirect, must be prevalent in 
the blood of COVID-19 patients [5,12]. Relatedly, over 900 metabolites 
in the blood have been inputted into a predictive model for COVID-19, 
adding to previous studies reporting metabolomics in the blood 
[13]. Given all the evidence for biomarkers in the blood in patients 
with COVID-19, we hypothesized that we could target the unique 
combinations and concentrations of multiple blood-borne molecules in 
vivo, in addition to SARS-CoV-2 RNA, using Raman transcutaneously. 
Our approach would thus combine the optical engineering of Raman 
(detecting the signals of multiple targets) with machine learning 
(classifying and predicting) to arrive at a diagnosis of COVID-19.

Glucose

We sought to extend our diagnostic platform, using the same 
hardware but with the software re-trained on new data from a 
different target-glucose. Kang et al., observed glucose with a Raman 
spectroscope [14]. They predicted glucose in a pig model from the 
Raman spectra of 911 cm-1, 1060 cm-1 and 1125 cm-1 using Partial 
Least Square (PLS) regression analysis, as opposed to a more powerful 
machine learning algorithm. Enejder et al., describe the non-invasive 
measurement of glucose in 17 humans following a glucose tolerance 
test using Raman spectroscopy and PLS analysis [15]. We sought to 
improve on the predictive power of Raman and address some of the 
challenges described in those studies, such as background noise and 
limits of detection, by integrating our machine learning algorithms. 
The advantages of our glucose study protocol include being outpatient, 
with the usual variations in glucose levels due to exercise and diet and 
random. We did not intentionally raise the glucose levels to increase the 
Raman signal. Our subject is diabetic on pump therapy, thereby more 
closely representing the intended patient population. We also note that 
sensors for glucose monitoring can deviate from Fingerstick (FS) tests 
by 20 points, as we show. Davis et al., compared, in the hospital setting, 
sensor and FS readings and found a mean absolute relative difference of 
12.8% [16]. With more variation in exercise and diet in the outpatient 
setting, one would expect a larger difference than when compared in 
the inpatient setting, as we find.

Materials and Methods
Hardware prototype (same device was used for both COVID-19 

and glucose testing): The assembly includes a 830 Raman system with 
a high Signal-to-Noise Ratio (SNR) of (6400:1) with a fiber-optic probe 
housed in a patient-interface into which an individual inserts a finger 
to receive the laser excitation (Figures 1-4). The 830 nm laser is selected 
as an excitation source to reduce fluorescence interference. The system 
also employs a back illuminated CCD to increase system sensitivity. 
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The 830 nm laser is transmitted through a 105 micro core fiber to the 
probe which is collimated and shined on the fiber. The Raman signal is 
captured and guided through a signal fiber to the Raman spectrograph. 
The laser powered at 250 mW was used to capture Raman spectra 
for, sequential 20 second intervals [3]. The components of the device 
include an 830 nm laser (Innovative Photonics Solutions, Inc.,), BI-CCD 
camera (Andor), Imaging Spectrograph SRaman 830 W2 Innovations, 
Inc., and Raman mprobe 830 (W2 Innovations, Inc.,). Both the raw data 
(including fluorescence) and processed data (pure Raman) were stored.

The device was inspected and the design analyzed for electrical, 
mechanical and laser safety. All electrical components are shrouded 
within a metal box and connections to the patient-interface are fiber-
optic. For use on patients, a medical grade isolation transformer was 

used to provide two means of patient protection per the requirements 
of 60601-1. The device uses a class 3B laser that is housed, including a 
permanent light blocking shield that conforms around the finger. The 
viral detector device blocks a direct or reflected beam. Measured laser 
power was below the Maximum Permissible Exposure (MPE) for Skin 
Exposure per ANSIz136.1 of 364 mW/cm2. 

The captured data was inputted into a machine learning classifier 
that had been previously trained to distinguish individuals who have 
been found to test positive for disease, such as COVID-19, from those 
who have been found to test negative for that disease. The classifier 
outputted an appropriate indicator, providing the user with an 
immediate indication of whether the patient was COVID-19 positive 
or negative. 

Figure 1: Viral Detector-Human interface with attached laser and signal fiberoptic cables. Inserted finger with minimization of ambient light, as employed in 476 patient 
study. Interface houses the Raman probe U.S. Patent No. 11,452,454, U.S. Patent No. 11,304,605.

Figure 2: Dimensions of human interface of viral detector used in 476 patient study.

 S4:004.
(2024)



Volume 12 • Issue S4 • 1000004J Infect Dis Ther, an open access journal
ISSN: 2332-0877

Page 4 of 10

Figure 3: Components of human interface for finger insertion with additional laser safety protections. Raman Probe connections for laser and signal fiberoptic cables. 
Cables connect to laser source and CCD.

Figure 4: Frontal view depiction of direction of laser and signal with focus on laser safety.
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COVID-19 study

Prior to obtaining IRB approval at Holy Name Medical Center in 
Teaneck, NJ, the device underwent extensive safety testing at Sunrise 
Labs, Inc., in Bedford, NH. Informed consent was obtained for all 
patients. We excluded from the study anyone younger than 18 years of 
age. Patient data were collected, including age, symptoms, vaccination 
data, gender and viral load (cycle numbers). Since transcutaneous 
devices have previously been documented to report incorrect results 
for non-caucasian skin colors, we also collected skin color data [17]. 

Expected outcome of the research

We set out to demonstrate a correlation between positive and 
negative COVID-19 tests by PCR with the test results from the 
experimental transcutaneous viral detector. 

Exclusion criteria 

Pregnant women and other special populations, such as minors and 
legally incompetent patients.

Recruitment

While undergoing PCR testing, either at the outpatient lab of Holy 
Name Medical Center or on the hospital ward, the finger test was done 
concurrently, as outlined in the protocol. No patient identifiers were 
entered. The PCR test was then processed at the Holy Name Medical 
Center lab and results entered into the patient’s medical record. PCR 
test identifying numbers were recorded and stored.

Study duration

The pilot study was conducted June, 2021 to August, 2022. 

Sample size

In designing this feasibility study and its statistical power, we 
anticipated the need for 100 patients comprising a sample of 50 
individuals (both men and women) with SARS-CoV-2 by PCR and 50 
with negative PCR tests, according to the McNemar χ2 test. We studied 
476 (316- and 160+) patients.

Variables

Available for all patients: The following details available for all the 
patients.

• Raman spectra

• Inpatient/Outpatient

• PCR results 

Available for some patients: The following details available for 
some patients.

• Symptoms 

• Fever 

• Cycle threshold numbers 

• Skin color (motivated by studies of skin color-effect on pulse 
oximeter accuracy)

• Flu vaccination status

Secondary outcomes

In addition, there are secondary outcomes that we hope to explore 
in future work. These include:

• Effect of skin color on Raman measurements using our device 

• Ability of our device to detect immune status 

• Ability of our device to calculate viral load 

Ethics

This study protocol complied with the Institutional Review Board 
(IRB) and Investigative Committee on Clinical Research (ICCR) at 
Holy Name medical Center and was conducted according to rules 
and guidelines of Good Clinical Practice (GCP). Data was handled 
confidentially and all data was stored for the length of the study and 
for 15 years afterwards at the site, for further publication. Informed 
consent, approved by the Center’s Ethical Committee, was obtained 
from the subject by an authorized research team member only. 

Glucose study

Between April, 2023 and July, 2023 one patient (signed consent 
received) with Type 1 IDDM on a Tandem pump with a Dexcom G6 
sensor underwent 205 Accu-Chek glucometer finger stick blood glucose 
testing at home. The tests were performed randomly throughout the 
day and night. Each time a test was performed, 3 sequential tests-FS 
and Dexcom readings-were taken separated by 1 minute. Concurrently, 
3 finger insertions into the Raman/AI device were done over 3 minutes 
(Table 1). 

Data analysis

The details of specific machine learning are described in Results. 
Here we describe the preliminary processing and normalization of 
the Raman spectra. For each observation, the set of Raman scores 
were treated as a 2000-dim feature vector. Since limits to the device’s 
spectral resolution may cause “bleed-through” in adjacent points of 
the spectrum, we explored a Gaussian kernel centered at each point to 
smoothen the observations. However, initial cross-validation studies 
suggested this was unnecessary. Next, in the training set, we fitted a 
StandardScaler to standardize each feature to have mean=0, standard 
deviation=1. To avoid risks of data snooping, the same scaling was 
applied to the test set rather than fitting a separate scaler on the test.

Results
COVID-19 testing

Sample Raman spectra are shown in Appendix A1. We also show 
the Receiver Operating Characteristic (ROC) curve, the average 
spectrum of a patient and t-tests indicating that multiple points of the 
Raman spectra contain predictive power (Figures 5-7). The sensitivity 
and specificity results are shown in Table 2.

AUROC 0.896

We employed a Gradient Boosted Tree (GBT) classifier to 
learn SARS-CoV-2 status from a patient’s finger spectroscopy 
(hyperparameters described later in this paper). We chose a GBT model 
(500 trees) since such tree-based models have performed well with 
tabular data analyses. In a preliminary cross-validation analysis, we 
observed that GBTs performed slightly better than random forests and 
other approaches. As its prediction, the GBT model reports a numeric 
score between 0 and 1 (inclusive), with 1 indicating highest confidence 
of a positive (i.e., infected) case. To binarize these predictions, an 
appropriate threshold needs to be selected (the AUROC metric 
aggregates over all such thresholds). In the results we report below, we 
focused on thresholds corresponding to sensitivity ≥ 0.8 and assessed 
the corresponding specificity at that level. We performed two analyses:

Citation: Chefitz H, Singh R, Birch T, Yang Y, Hussain A, et al.           Point-of-Care No-Specimen Diagnostic Platform using Machine Learning and Raman Spectroscopy: 
Proof-of-Concept Studies for Both COVID-19 and Blood Glucose. J Infect Dis Ther S4:004.

(2024)



Volume 12 • Issue S4 • 1000004J Infect Dis Ther, an open access journal
ISSN: 2332-0877

Page 6 of 10

Data split randomly: Over all 455 observations, we performed a 
5-fold cross-validation analysis (i.e., 80% training, 20% test data), with 
observations shuffled across time. At a sensitivity of 0.80, the GBT 
model achieved an average specificity of 0.837 (standard error: 0.046). 
Over all thresholds, it achieved an average AUROC of 0.896 (standard 
error: .025) 

Data split by time: We wondered if the mutation of the virus and the 
appearance of different strains over time would have an impact on the 
model’s predictive ability. We therefore split the data by time, training 
on observations before 01st July, 2022 (N=404 with 278 negatives) 
and testing on later observations (N=51 with 29 negatives). With the 
same hyperparameters as before, we trained a GBT model. It achieved 
a sensitivity of 0.818 with a specificity of 0.517, with AUROC=0.684.

The reduction in performance from a random-split to a temporal-
split evaluation suggests that the changes in the patterns of Raman 
spectra over time, possibly induced by mutations in the virus, can 
have an impact on model performance. We believe that a larger, more 
extensive study could further resolve these issues. Additionally, we 
believe that a practical approach would be to update the model by re-
training on updated data. Fully anonymized patient observations could 
be for iterative refinement of the model. The advantage of a machine 
learning based solution is that such refinement can be made in software 
and then transmitted back to field devices with minimal delay.

We believe it is unlikely that our model is confounded by some 

non-COVID condition among the patient population. With 382 
outpatients in our study that spanned all 4 seasons, the possibility that 
an unknown medical condition common to all outpatient COVID-19 
positive patients would account for the unique spectrum assigned to 
COVID-19 and thus confound our results is extremely unlikely. 

Another advantage of the GBT is that we could explore feature 
importances, in order to interpret the model and identify the most 
important spectra. In particular, we observed that spectra corresponding 
to the range of 1700-2200 cm-1 were important to distinguishing 
between positive and negative examples.

Thus, our study strongly suggests that with increasing data, the 
prototype-a-non-invasive, immediate, trans-cutaneous diagnostic 
device- becomes more powerful.

Glucose testing

Sample Raman spectra are shown in Appendix A2. We also show 
the precision-recall curve (Figure 8). 

The glucose data analysis used the same overall machine learning 
framework as the COVID-19 study, but was trained afresh, in five-fold 
cross-validation, on Glucose-specific data. As shown by the no-skill 
line in Figure 8, the AUPR of 0.58 indicates that the model is indeed 
able to learn aspects of glucose concentration, though we expect that 
more training data, beyond the scope of this proof-of-concept study, is 
needed for stronger predictive performance.

Attribute Details

Age 63

IDDM history 53 years

Gender Male

Dexcom G6

Accu-Chek Guide

Pump Tandem Control-IQ v7.6.0.1 SN1065558

Skin color White

Table 1: Patient characteristics.

Figure 5: Receiver operating curve-From the machine learning data analysis.
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Figure 6: Average Raman spectrum output from the device (average intensity shown across cases and controls in the training dataset).

Figure 7: Individual Raman peaks contain information that can distinguish between cases and controls. T-tests on score Z: For each individual, wavenumber values 
(across the 2000 points) were converted to z-scores to control for patient-specific biases.

PCR 123CY (Finger test)

COVID+ 148 118/148

COVID- 307 257/307

Sensitivity - 0.80

Specificity - 0.837

Table 2: Number of patients.
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Discussion
We have described a diagnostic platform that employs Raman 

spectroscopy with a unique patient-interface for finger insertion and, 
using specific hardware parameters together with machine learning, 
can detect COVID-19 transcutaneously and non-invasively, as well 
as glucose. When the device targets the blood transcutaneously, the 
derived Raman spectra together with machine learning produces a 
significantly different result between COVID-19(+) and COVID-19(-) 
patients. We included in our study both inpatients and outpatients, 
symptomatic and asymptomatic. To demonstrate the robustness of our 
platform, we extended its application to glucose detection. It is precisely 
the integration of our AI/ML model with Raman spectroscopy, using 
the finger insertion patient-interface, which allows the specific target’s 
signal to be detected with as few as 205 glucose readings.

SARS-CoV-2

In conceiving our idea and design for the diagnostic device, we 
anticipated various challenges that were sufficiently met. Although 
COVID-19 is caused by a “respiratory” virus, we believed at the outset 
that COVID-19 could be detected by investigating the blood. The rich 
vasculature of the aero-digestive tract, upper and lower airways and 
oropharynx would absorb almost anything inhaled, as occurs with many 
inhaled substances. Even if the virus itself were not in the blood, or at a 
concentration too low to reliably detect with our device, the increasing 
reports of systemic effects of COVID-19 were strong evidence that 
there were hematological abnormalities to target [5,12,13].

Our study enrolled 476 patients (after quality control, we kept 
N=455 samples), none of whom experienced any adverse effects from 
the device. We anticipate that we can improve our results with further 
modifications of the device’s parameters, as well as more data input.

With the advent of Spatially Offset Raman Spectroscopy (SORS) 
and other deep tissue techniques, more attention has been aimed at 
biomedical applications [8,9,18]. However, those applications of Raman 
include a specimen on a slide, other platform, or container, or a direct 
application of a probe to a specimen [19,20]. Our objective was to 
safely combine the best Raman parameters of laser power, wavelength, 
distance, detector and spectrograph processing with the most powerful 
machine learning algorithm in order to non-invasively “see” beneath 

the skin into the human vasculature and target the many molecules 
that represent the intravascular unique signature combinations, both 
quantitatively and qualitatively, in an infected COVID-19 patient.

Others have demonstrated the feasibility of combining Raman 
spectroscopy with machine learning. A Multiple Instance Learning 
(MIL) approach in machine learning was employed for COVID-19 
infection in saliva, in which an Area Under the Curve (AUC) of 0.8 
and a sensitivity of 79% (males) and 84% (females) and a specificity of 
75% (males) and 64% (females) were achieved [7]. A feasibility study 
that analyzed actual blood tests, focusing on variables “age”, “wbc”, 
“crp”, “ast” and “lymphocytes” from 102 COVID-19 negative and 
177 COVID-19 positive patients, applied different machine learning 
algorithms to achieve an accuracy of 82%-86%. Using a Random forest 
classifier, their best results were accuracy 82%, sensitivity 92%, PPV 
83%, AUC 84% and specificity 65% [5]. 

The underlying biochemistry of the expected acute phase reactants, 
as well as viral composition, has been studied using Raman spectroscopy 
on a specimen and has thus served as the scientific basis of our study. 
Please refer to Appendix B for further details.

In our study, we examined non-invasively with a unique patient-
interface the entire mixture of blood components, which when 
viewed as a whole indicate the presence or absence of COVID-19. 
The text files from the Raman spectra, when processed with machine-
learning, detected differences between COVID-19 positives and 
negatives. The feature importance analysis of the gradient boosted tree 
classifier reported 1800, 2200 and 2400 cm-1 as important peaks for 
distinguishing COVID-19. Glycerol, a metabolic product of glycerides 
and lipids, is known to produce a peak in this area (1000-1500) when 
examined on a slide. It is possible that a change in lipid metabolism 
occurs as a result of COVID-19, similar to the alteration in the clotting 
cascade. Our differences in Raman spectra between positives and 
negatives would be consistent with the findings of Roberts et al., in 
their study of the metabolomics of COVID-19 [13]. Similarly, activity 
at 1700 Raman shift is strongly associated with molecules containing a 
carbonyl group C=O, such as proteins. Carbonyl groups are found in 
HIV as well as COVID-19 [21]. Higher shifts in the 2000 range could 
be associated with cyano groups C=N, also in molecules such as RNA. 
While more data is needed to definitively ascribe these important peaks 

Figure 8: Glucose testing precision-recall curve.
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agents and molecules. A similar approach can be applied to other 
pathogens or variants using our device. By employing probabilistic 
models and computational biology, we hope to map the physical 
structure of future infectious agents. Using machine learning, we aim 
to determine the Raman signature of new pathogens, enabling us to 
identify a novel infection before it is sequenced in the lab. Building on 
our glucose study, we plan to extend the application of our diagnostic 
platform to detect additional molecular markers and chemistries in 
blood.
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