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Introduction
Physics has long contributed to ecological studies. If we only 

focus on ecosystems, which are central objects in ecology, physical 
approaches are one of the main ways to understand and possibly 
manage ecosystems. We are surrounded by ecosystems, which depend 
on us, just as we depend on them. The recent acceleration of population 
growth means increased pressure on ecosystems as well as on ecosystem 
functioning [1,2]. As a result, we face a double challenge: to improve 
our theoretical understanding of ecosystems and to use this improved 
knowledge cleverly. Can physics be of help in this major undertaking? 

The increasing pressure on Earth’s resources and ecosystems means 
there is an urgent need to manage ecosystems more efficiently. So far, 
it is clear we have not succeeded, as exemplified by global warming and 
biodiversity loss [3,4]. To improve and diversify management options, 
we first need to improve our understanding of complex ecosystems 
in order to predict how they will change in response to different 
disturbances. With the exception of a few isolated cases, we are not 
yet capable of managing ecosystems as a whole. Experience has shown 
that we are still unable to predict the state of the ecosystems in which 
we have tried [5], for example, to reduce vegetation fragmentation 
[6], control invasive species [7], or modify geochemical fluxes [8] and 
intakes. Although it is true that “to predict is not to understand” [9], 
we hope a better understanding will help us predict, and ultimately 
manage ecosystems. 

In this context, a wide body of literature addresses ecosystem 
issues with concepts and tools borrowed from physics along with 
more biological and socio-economic approaches. First, the ecologist 
community usually assumes that an ecosystem is a system which 
rigorously respects physical laws, and can thus be understood with 
concepts developed in physics. Physics is understood here as the 

natural science studying matter and energy in space and time. Matter 
and energy were probably the first physical variables proposed 
to tackle ecosystem functioning [10,11]. Conservation laws and 
thermodynamics provided the first concepts to apply these variables 
to ecosystem fluxes, and hence to grasp their global behaviours. In a 
way, species were ignored in such global (holistic) approaches, or 
rather they were considered as reservoirs of matter and energy which 
needed to be taken into account and controlled [12,13]. Here, I will not 
comment on physical tools such as the wide diversity of mathematical 
models successfully applied to ecological questions [14-17]. Rather, in 
the present survey, I focus on physical concepts only, and how relevant 
they are to understand ecosystems. 

Based on physical concepts, ecologists soon discovered that 
ecosystems are open systems, while theories of physics (and 
thermodynamics) are more suitable for handling closed systems. 
Further, there is no clear homology (i.e. rigorous correspondence) 
between physical and ecological systems. One central reason for this 
observation soon became quite clear: ecosystems are not purely physical 
systems. The biological components of ecosystems (species) suppose 
that ecosystems behave differently from purely physical systems. In 
particular, species evolve by natural selection. This so-called duality 
problem of ecosystems led some authors including myself [18,19], 
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Abstract
Ecology has probably borrowed tools and concepts from physics since its origins. Powerful physics approaches 

have particularly helped incorporate challenges related to ecosystems, including ecosystem functioning and scale 
issues. I conducted a survey of physical theories and concepts applied to ecosystem ecology to identify fruitful 
borrowings and past traps. I left aside differential equations and all mathematical tools developed in physics but also 
used in ecology. Building on information theory, thermodynamics and statistical physics on the one hand, and on 
dynamical systems, self-organisation, and complexity on the other, my first aim was to identify a trend in this long-
lasting collaboration between physics and ecology. For example, some physical concepts are now widely recognised 
to have failed to help understand and/or to manage an ecosystem as a whole: information theory, thermodynamics 
and extremal principles belong to this category. More recent physical theories have emerged in ecology and not yet 
failed: dynamical systems and statistical physics, complexity and graph theories belong to this category.

The second aim of the survey was to identify some of the reasons for the only partial success of otherwise 
powerful physical concepts in ecology. The ecosystem is a dual object composed of living (biotic) and inert 
(abiotic) components in close interaction. Although a basic tenet, an ecosystem cannot simply be understood, in 
practice, as a purely physical (or purely biological) system. Consequently, a difficult theoretical question needs to 
be addressed: could a revival of the interface between physics and ecology finally reveal how to understand and 
manage ecosystems? Or will we need radically new concepts (and more generic tools) to understand the ecological 
organisation of matter and energy in an ecosystem? Strategies for achieving this goal and for advancing theoretical 
ecosystem ecology are discussed.
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to recommend looking for more generic and possibly radically new 
approaches than physical ones [20].

This is not to say that physics is of no use in ecology. On the 
contrary, it can be helpful, as in the past, when physics produced some 
highly generic and flexible concepts. For example, the information 
concept temporarily provided a powerful way to analyse ecosystems. 
Several informational attempts have been made to understand trophic 
processes and the components of biodiversity [21,22]. The analogy 
between information and thermodynamic entropy even offered a 
way to return to purely physical analyses. These approaches can be 
summarised under “statistical physics” and “extremal principle” 
concepts [13,23,24]. Here I will explore whether, today, we have gained 
sufficient distance to conclude that these approaches failed to help 
understand ecosystems [25,26]. 

Despite this possible failure, the long lasting collaboration between 
ecology and physics remains relevant, particularly to understand 
complex ecosystems. Some approaches which promote more universal 
concepts [20,27,28], represent new attractive ways to understand 
ecosystem functioning. Obviously, ecosystems have their specificities 
and difficulties. Ecosystems are constrained by physical as well as 
biological principles (the duality problem), which is combined with 
the boundary problem, i.e. it is difficult to define the boundaries of 
an ecosystem [18], the abstraction problem, the ecologist mentally 
and subjectively isolates the ecosystem under study, and the short-
term problem, the fact that an ecosystem lasts longer than human 
observations [19]. Yet, physics leads us to believe that it can sometimes 
avoid these research traps. There is no doubt that analysing past 
attempts and failures will help better exploit the interface between 
physics and ecology. 

Ecology is a young science and is still searching for the most 
appropriate concepts to help understand ecological objects and 
processes [29]. The ecosystem is probably one of the most difficult 
object to study, as Tansley observed in an early definition [12]. The aim 
of this paper is not to list all the physical approaches used in ecology and 
to provide a definitive answer to the usefulness of physics in ecology. 
Rather I present past attempts to use physics in ecosystem ecology and 
give my personal view of the reasons for their partial failure. I want to 
emphasise that no survey of physical tools such as the wide body of 
differential equations and models applied to ecology will be found in 
this discussion paper. I hope to provide a basis for recommendations 
for the future use of physics in ecology, more specifically in ecosystem 
ecology. New concepts (or older concepts revisited in ecology) 
combined with powerful formalizations, seem to me to be fruitful way 
to analyse and manage ecosystems [17]. In particular, I will discuss 
how complexity, information and graph theory possibly open up new 
avenues to understanding ecosystems [20,28]. 

Challenges of Ecosystem Ecology 
A great deal remains to be learned about ecosystems and how 

they function. The proof is our continuing inability to manage 
ecosystems despite recent improvements. We do know that the cyclic 
processes of transformation of matter and the circulation of energy 
largely determine the conditions which prevail in ecosystems [30,31]. 
These processes partly contribute to ecological services: regulating 
greenhouse gases, producing drinking water, or recycling waste, all 
contribute to ecosystem functioning [32-34]. How can we reconcile the 
many different and perhaps disparate elements of the system without 
trying to unify them in an integrated concept? We long believed that 
physical concepts such as energy or information could help integrate 

ecosystem processes and thus manage them for our benefit (and for 
that of the ecosystem). 

While not pretending to be exhaustive, physics should be able 
to address at least four central ecosystem challenges. (i) While 
contributing to improving the human condition, the resulting changes 
have been responsible for increasing degradation of ecosystem services 
[32]. To imagine a sustainable future, in which we will manage our 
waste, and find food and energy in our environment is one of the 
greatest challenges facing ecosystem studies [1,34]. (ii) To ensure a 
sustainable future, the simplest precaution to take would be preserving 
the diversity of life. However, the functioning of the ecosystem is not 
only tied to its diversity and it is difficult to predict the behaviour of 
an entire ecosystem based on a small number of species because the 
presence of a few dominant species and their interactions can affect its 
key processes [16,31,35]. (iii) It is crucial to predict how ecosystems 
will react (or are already reacting) to climate change [36,37]. The 
capacity of ecosystems to respond is closely correlated with all their 
spatial, trophic, and genetic properties [20,38]. A lively debate is 
currently underway as to whether ecosystems could cross so-called 
tipping points, and thereafter undergo unpredictable regime shifts 
[39,40]. Lastly, (iv) the ecosystem is a complex system in that, among 
other reasons, the concept simultaneously embraces several levels 
of organisation [41,42]. Many scholars believe that this multiplicity 
of scales is largely responsible for our difficulty in understanding an 
ecosystem [43-46], and should be carefully addressed. 

To sum up, any given ecosystem is made up of different 
components (biodiversity, human beings, and the atmosphere, at the 
least) and of a large number of dependent interactions (abiotic such as 
climatic interactions, biotic such as trophic interactions) over several 
scales, which make it extremely difficult to grasp [29,31,47]. Although 
this dual property is a basic tenet in ecology, it is rarely considered in 
practice. How can we coherently define such a multi-facetted object? 

Early Concepts for Ecosystems
System dynamics

The first global view pioneer specialists had of an ecosystem was 
certainly that it was a cycle of matter [10,12]. Matter is here understood 
as any substance having a mass and filling a volume. The regulating 
role of nutrients in different ecosystems was reported very early on. 
Phosphorus, for example, is usually more limiting in freshwater 
systems, while nitrogen is more limiting in marine ecosystems [31,36]. 
Nitrogen and phosphorus are generated more rapidly by litter in 
tropical zones. The water and carbon cycles are well understood, and 
these cycles are now being discussed in depth in an effort to understand 
the roles and responses of ecosystems to ongoing global changes. Today, 
one may still wonder whether in a particular ecosystem, production is 
limited by a fluctuating supply of nutrients (ascending regulation) or 
by the species’ consumption of those nutrients (descending regulation) 
[11]. The two types of regulation are probably combined in varying 
proportions which are still not understood today. 

On closer examination, viewing an ecosystem through its cycle 
of matter is not completely satisfactory. We know it is also important 
to understand how energy is distributed within the system [11,13]. 
Energy is here understood as the property of any object that may be 
used to perform a work or to heat the object. The auxiliary power 
supply ensures the exchange of matter, and appears to be essential 
for the functioning of the ecosystem. This energy, often of physical 
origin, allows the circulation of fluids which transport nutrients and 
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biochemical elements. Typical examples are the circulation of water 
within plants due to evapotranspiration, and ascending currents 
(upwelling) in the oceans which supply the nutrients needed by 
organisms living just below the surface of the water [31,36]. The energy 
needed for plant growth and for the movement of living organisms is 
also a form of auxiliary energy. 

Analyses of energy and matter transfers within an ecosystem 
highlighted the sizable losses of energy that occur from one trophic 
level to another during the predation/consumption process. According 
to pioneer studies, only 10% of energy passes from one level to a higher 
trophic level [11]. The rest is lost for the organisms at the bottom of 
the trophic chain, or even for all the species, in terms of calorimetric 
losses. This observation follows directly from the second law of 
thermodynamics, which states that energy conversion is always less 
than 100%. Losses may be due to energy degradation or dissipation. The 
second law of thermodynamics states that the spontaneous evolution of 
a closed system (i.e., a system which neither receives nor releases energy 
or matter) is accompanied by an increase in its entropy, in other words, 
in its “disorder”. Order can be increased (and, consequently, entropy 
locally reduced) only at the price of disorder, either equal or higher, 
otherwise introduced [48]. This remark also applies to open systems, 
including ecosystems. Clearly, any order that is locally imposed by, say, 
the trophic system’s constraints, can only exist at the price of a small 
increase in thermodynamic entropy at the level of the global system. 

Thermodynamics and long term dynamics 

Still, if any of the matter and energy studies are accurate, no 
ecosystem can be considered as a closed isolated system, like those 
sometimes encountered in physics. Even when an ecosystem has 
reached maturity (for example, when its functioning and its structure 
have stabilized), it continues to change and to respond to inputs, 
energy, and the species which enter it [13,23]. Its dynamics often 
resemble a self-regulating state of equilibrium,  the state of an object 
understood here as having no net macroscopic flows of matter or 
of energy (through its boundary). However, one cannot ignore the 
permanent flows of energy, and those of matter, which maintain the 
structure of the ecosystem. The system itself is dissipative Glansdorff 
and Prigogine [48]: it makes the best use of the energy it receives, and 
consequently remains far from the state of thermodynamic balance 
(a state it would have reached if the system were actually closed). 
Thermodynamics is here understood as the branch of physics dealing 
with heat and temperature in relation to energy and work. Hence, the 
flow of energy allows the emergence of increasingly complex structures 
corresponding to a local reduction of entropy (the appearance of order, 
like in the trophic network). Despite this progress, the ecology of the 
past decades has admitted its inability to explain ecosystems with the 
help of thermodynamics.

In understanding ecosystem dynamics, knowing whether an 
ecosystem is close to equilibrium, or merely stable, is a major challenge 
for ecologists. Stability has several definitions. For our purposes, 
suffice it to say that an ecosystem is said to be stable if it can return 
to its previous state after an (unusual) disturbance [49,50]. When the 
system is dynamical, the stability of the state may be associated with 
the existence of an attractor or a basin of attraction. As we shall see 
below, the natural organisation of certain ecosystems may not fit such a 
clear-cut definition. While the variables describing a system are linked 
to certain constraints over time, as would be the case in an ecosystem, 
the state of the system does not move freely across all possible states. 
These states are displayed in the “phase space” defined by the variables 
describing the system. For example, its trajectory may be closed to form 

a cycle in this space, or even assume a chaotic shape called a “strange 
attractor” [51]. Yet, such chaotic behaviour has never been formally 
demonstrated for an ecosystem as a whole. When a disturbance or 
a catastrophe occurs, any system responds, and its trajectory in the 
phase space changes as a result or follows a specific potential surface 
[9]. Generally, an ecosystem is considered stable if its trajectory 
returns to its previous attractor or, which is equivalent, to a potential 
well [39,50]. The potential energy is here defined as the energy that 
possesses an object because of its position relative to other objects. This 
concept, which originates in the theory of dynamical systems, gives the 
impression that an ecosystem can be completely understood from the 
viewpoint of physics, even though it cannot. 

The theory of dynamical systems has been applied in ecology, at 
least since pioneer studies on prey-predator systems [52,53]. Dynamical 
system is here understood as the science describing the behavior of 
complex systems. But in this case, the focus object of the dynamical 
system is usually not the ecosystem, but rather a reduced (biotic) part 
of it. Dynamical systems have enabled clarification of the wide range of 
species interactions in a supposedly fixed abiotic environment, whereas 
an ecosystem includes the environment as an essential component. This 
explains why I do not discuss species interactions from the perspective 
of dynamical systems in more detail here. There is no doubt that one 
day, dynamical systems will help better understand ecosystems, as 
dynamical system theory has only been partly explored in ecosystem 
ecology to date [39,54]. These are preliminary studies, and often 
concern a single component of the ecosystem (e.g., plant biomass). 
In addition, no rigorous analytical study has yet been conducted, 
i.e., with formal demonstrations, of system behaviours after detailed 
model calibration. Real progress will probably be achieved once a 
high-dimensional equation system succeeds in interconnecting the 
dynamics of a representative number of ecosystem components [55].

The dynamical approach is often said to be opposed to a more 
information-oriented point of view [38,56], but as we shall see, these 
viewpoints are not mutually exclusive. The following section details 
how the information concept was developed in physics, in parallel to 
dynamical system studies, and contributed to another physical view 
of ecosystems. We will then see whether this theoretically interesting 
attempt to understand ecological objects has succeeded or failed, so far. 

Information theory

Information theory, conceived in the context of human 
communication [57], rapidly attracted the attention of ecologists. 
Information theory is here understood as the science studying the 
quantification, storage and communication of information content. 
Robert MacArthur, in particular, suggested quantifying the ecosystem 
energy flows studied by R. Lindeman, using a measure directly inspired 
by information theory [21]. According to this concept, the quantity of 
information conveyed by an event is inversely proportional to the a 
priori probability of the event occurring. It is intuitive that rare events 
carry more information than ordinary events, simply because they are 
unexpected. Information theory’s achievement was coming up with a 
way to quantify the information based on probability alone, regardless 
of the significance of the event. Using some key hypotheses, the theory 
proved that the average quantity of information of a class of events is 
minimal when all the events are equally likely. Many disciplines then 
made use of this theory. 

Later, landscape ecologists used it to quantify spatial structures, 
for example, the diversity of land covers (agricultural and other) using, 
among others, the Shannon index [58,59]. This index is highest when 
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each patch considered, whatever its location, has the same probability of 
being covered with a forest, crop or any other type of vegetation. It thus 
measures a kind of disorder, diversity, and local heterogeneity (Figure 
1). The index is highest (its sign has been changed in this ecological 
calculation) when different types of vegetation in neighbouring patches 
are grouped together. Conversely, several patches of a similar land 
cover provide a relatively homogeneous area, possibly at different 
spatial scales [60,61]. A plain in which cereals are grown, a closed area 
surrounded by hedges, or an agroforestry landscape will not have the 
same land cover characteristics, the same textural signature (Figure 1), 
and will therefore have different Shannon heterogeneity indices. 

 The information theory inadvertently drew an analogy between 
average information and entropy calculated from physical systems, 
two notions with the same formula. Entropy is here defined as the 
average amount of information produced by a stochastic source of 
data. The entropy of the information, the known information content 
of a system, logically contains data on the state of the system, the 
distribution of its constituents, identical (to a multiplicative constant) 
to that of thermodynamic entropy. This analogy has been the source of 
numerous misinterpretations in ecology (and elsewhere), as we shall see 
with the use of extremal principles [23,26], and is probably responsible 
for the majority of ecologists’ negative perception of thermodynamics. 

Information entropy was behind the proposal to measure the state 
of a community of species based on the probability distribution of the 
flows of matter and energy in its associated trophic network [21]. Despite 
this step forward in quantifying a community of species, the suggested 
index has been found to be incomplete and difficult to measure. It does 
not account for transfer efficiencies (rates) between trophic levels. 
This deficiency led to the use of the same index, but based on existing 
populations rather than on the flows of matter or energy between them 
[22]. This approach has been reproduced several times, each time a 

little better than before. For example, it is important to be sure to not 
over-represent rare species which, because of their rarity, can carry 
more weight in the Shannon sense than is reasonable. Paradoxically, it 
is easier to estimate information content by concentrating on common 
species, since rare events are difficult to measure. 

The Shannon index and other derivatives are widely used today for 
a rapid understanding of the structure of a community or a landscape 
[62,63], even though such indices have several potential traps. The first 
rule to observe in using such indices is to interpret the Shannon indexes 
among themselves, not as an absolute and self-explanatory value. 
To say that the (informational) entropy of a particular community 
is 50% lower than that of a neighbouring community means that the 
distribution of individuals is more even in the first community than in 
the second one for a comparable number of species. 

This type of index can be useful to quantify the structure (Figure 1) 
and, to some extent, the dynamics of an ecosystem. In the maturation 
of an ecosystem, one would expect an increase in the number of species 
(strategies r towards K [21], and a reduction in their abundances, to 
reduce the total entropy of the system (taken as a whole), taking into 
account the number of species and species abundances. One might even 
be able to quantify the contribution of each species to total entropy, 
or the entropy between two species, in other words, to measure their 
degree of dependence [63,64]. For the first time, ecologists have a 
metric to measure the information within an ecosystem. 

However, diversity indices derived from information theory have 
certain drawbacks. The first is an illusion of possible equivalence of 
information entropy (measuring the uncertainty in the system) and 
the diversity of the system. Indeed, several derived entropy indices 
quantify the same diversity differently. At the same time, a wide range 
of ecosystem structures can be characterised by the same information 

Heterogeneity Profile

Scale (pixel number around the central one)

H
et

er
og

en
ei

ty
 In

de
x

Multiscale 
Heterogeneity Map

Analyzed 
Landscape

H
et

er
og

en
ei

ty

a

b

c

Figure 1: The principle of heterogeneity computation is explained on a 2D simulated landscape (a) along with its associated heterogeneity profile (b) and 
maps (b and c). The categorical landscape is simulated with a nearest neighbour interpolation of randomly spread germs [60]. The heterogeneity map 
combines pixels corresponding to moving windows such that each window gives an averaged heterogeneity value for the vicinity of its central pixel. The 
colour scale highlights local heterogeneities (here the contagion index), as the three aligned homogeneous zones (c). The mono-scale heterogeneity 
maps scale 1 to 12 (b, inserts) of the simulated landscape are averaged to compute heterogeneity at each scale for all pixels (b, profile), and at each 
pixel for all scales (c, multiscale map).
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content. There is therefore no equivalence between information and 
species biodiversity in an ecosystem. Another hurdle is the dependence 
on the scale or organisational level at which the indices are calculated. 
The diversity of a community of insects is quite different when measured 
in one tree (which may also be considered as an ecosystem) or in the 
whole forest. It is usually preferable to compare diversity measurements 
made at the same level of organisation (e.g., organisms, populations, 
ecosystems…). As opposed to spatial and temporal scales which are 
continuous, levels of organization are discrete; they assume different 
processes and potentially highly different diversities. These indices 
involve many other problems related to sampling, as it is often difficult 
to isolate an individual for the purpose of adding it to (or subtracting 
it from) other individuals in the species or community concerned 
[62,65]. Therefore, diversity indices are sometimes calculated on the 
basis of genera, orders, or families of taxa within the communities of 
an ecosystem. 

Failures of the Physical Concepts
Probabilistic views  

More recently, ecologists discovered another major limitation of a 
diversity index based on probability, such as the Shannon index. Such 
an index has wide statistical variability: it is sensitive to rare species, 
which are harder to sample, and whose observation is subject to many 
hazards [62,66]. A diversity index of this sort presupposes that the 
species have equal weight and that the chances of observing them 
within the system are the same, which seems unlikely. Individuals of 
larger species have higher chances to be detected, and any probabilistic 
index seems to remain strongly biased. It would be relevant to estimate 
diversities at most (if not all) scales or at most organization levels of 
the ecosystem to grasp an unbiased view of the exact system diversity. 
The index also assumes that the states (or events, or categories) of the 
system are independent, with no correlations between them, without 
which the correlations would distort the probability of the occurrence 
of each state. A hypothesis like this would be illusory in a system as 
complex as an ecosystem. Indices are required that account for possible 
biases in estimation, such as q-entropies [67], which, although regularly 
mentioned, are rarely used in ecology [66].

Above, I stressed the impossibility of reducing an ecosystem either 
to its biocoenosis or to the community of species it hosts. This way of 
quantifying species diversity can provide an overview of the community, 
but not of the ecosystem. To consider a community of species in a fixed 
environment is also a strong approximation. This frequently implicit 
association must be made explicit if we wish to grasp the functioning 
of the system as a whole [20]. Nothing prevents us from quantifying 
the states of the ecosystem, instead of only those of its biocoenosis. 
Once we accept that biocoenosis should be included, the first difficulty 
is choosing the appropriate parameters which characterise the state of 
the ecosystem. In an ecosystem composed of flora, fauna, atmosphere, 
soil, and human populations - at the very least, we then need several 
descriptive parameters for each of these major components and their 
interactions [20,38]. Only then can we estimate the probability of 
the occurrence of their states, before calculating the diversity of the 
assemblage.

Grasping the ecosystem as a whole brings us closer to quantifying 
the complexity of the ecosystem. The Shannon index and its 
derivatives have another notorious weakness related to the synthetic 
characterisation of the complexity of an ecosystem. When applied 
to species distributions, this index is not sensitive to the order of the 
species: it is invariant in permutations. Even if the probabilities of the 

species were interchanged, the Shannon index value would remain 
unchanged. In the case of species, this advantage would be questionable 
if no species is presumed to play a particular role. Similarly, the 
invariance of a changed order has a lower value if we base the Shannon 
index on different types of land cover in a given landscape, as some 
of them may never reach certain probabilities [61,63]. A network of 
hedges, for example, can never fill the entire landscape, or they would 
no longer be hedges. Neither is such invariance suitable for application 
to a strongly oriented trophic network: from the primary consumers 
and decomposers to the species higher up in the trophic hierarchy, 
whose members are necessarily limited in number [11,68,69]. 

So, ecosystem complexity certainly masks a kind of order. It is 
instructive to compute an estimator which is sensitive to the shape of 
the probability distribution of the system constituents. For example, 
unlike the Shannon index, Fisher information can quantify the 
change in probabilities linked to a first approximation of the relative 
frequencies of their occurrence [70]. In a dynamic ecosystem, with a 
constant number of species, the probability of the presence of each 
species would nevertheless change over time. The gains and losses 
of information that an index like the Fisher index produces during 
ecosystem transitions are interesting to quantify, but they do not 
completely capture the complexity of the ecosystem. Both these indices 
are general, and convey little information about the organisation of the 
constituents. Fisher information cannot say if a sudden rise in certain 
probabilities is caused by bacteria or by grains of sand sticking to the 
trees (an abiotic process which could also alter the behaviour of the 
whole ecosystem). The notion of organisation or order is still missing. 
Instead, certain thermodynamic (extremal) principles may be useful 
to quantify the order underlying the organisation and dynamics of an 
ecosystem. 

Extremal principles

In parallel with probabilistic attempts inspired by information 
theory, some ecologists explored the use of the analogy between 
information and (thermodynamic) entropy to characterise ecological 
systems. The notion of entropy still has good potential for ecological 
and biological systems. Extremal principles, here understood as any 
maximization or minimization of a state variable, are among several 
recent and therefore less known concepts which have tried to remedy 
theoretical drawbacks in ecology. The pioneering approach to species 
using information theory was modified to account for interactions 
among different species. Several indices which were originally 
informational, and later thermodynamic, have now emerged to account 
for the organisation of the species community. 

For example, the ascendancy perspective relies on information 
shared among species, thus combining the correlations of the species 
among themselves [64]. Ascendancy quantifies the independence of 
populations from the presence of the others, for example, in terms 
of their respective abundances. Ascendency could be qualified as 
a measure of the uncertainty that can be observed indirectly in the 
network of relations among the species. This concept is closely related 
to the maturity of an ecosystem defined by Eugene Odum, and led to 
the hypothesis that one community of populations tends naturally to 
enhance its ascendancy, barring a disturbance [23,64]. In other words, 
steadily increasing amounts of information are needed to construct 
a complex and mature community, because the relations among the 
species become increasingly numerous and increasingly diversified 
over time. 

The increase in a pure information index brings to mind a principle 
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with which physicists are familiar: the principle of the maximization 
of thermodynamic entropy. The second law of thermodynamics states 
that during the transformation of energy within a closed system, part of 
the energy is lost in disorder (usually in the form of heat), and therefore 
cannot be converted back into work. This part of energy is quantified 
thanks to thermodynamic entropy, which can therefore be maximized 
[71]. In passing, it should be mentioned that the principle does not 
preclude a local reduction in entropy [72,73], as long as the entropy 
of the whole system remains maximized. The maximal disorder (or 
chaos) corresponds to the thermodynamic equilibrium of the system 
(i.e. a kind of stability in which the system has no net flows of matter 
or energy). 

Unfortunately, a direct transposition of these physical results is 
not possible in the case of open systems, i.e., in the case of ecosystems 
which continually receive energy that maintains them far from 
thermodynamic equilibrium. It is known that such systems react to 
this energy input by degrading and dissipating the energy they receive 
[48]. While the complex relations among the components of the system 
emerge, the structures that dissipate the energy present in the system 
tend to organise themselves. They succeed partly through growth and 
reproduction within the system, and partly through exportation of 
matter and energy, such as animals migrating outside the ecosystem. 
However, the exact way ecosystems dissipate their workable energy 
remains a much-debated topic [26,73].

One may intuitively know that an undisturbed ecosystem tends to 
increase its organisation, that is, to locally and momentarily reduce its 
entropy. Faced with the failings of a purely thermodynamic approach, 
several ecologists tried to make use of different types of energy-related 
indices to recover this intuition. These indices are state-level variables 
which characterise an ecosystem subjected to an extremal principle, to 

various kinds of optimisation [23,25]. Among the pioneering works in 
this category are those on the maximization of the exergy rate [29,74].

Exergy represents “usable energy” or work available for the system. 
This optimisation principle states that ecosystems tend to use all the 
means they possess to create dissipative structures (Figure 2). These 
means help degrade and break down the variations in energy (or 
gradients) intrinsic to the system, which helps dissipate the energy 
present. The maximization of the energy of an ecosystem (used by the 
organisms) is another way of tracing optimisation proposed by Howard 
Odum (Eugene’s brother) [13,24,71]. Similarly, the principle of 
maximum entropy production (Figure 2), which has occasionally been 
seen to be useful in biology, is less well established than the principle 
of maximization of entropy stating that the probability distribution 
which best represents the current state of knowledge of an object is 
the one with largest entropy, in statistical physics [25,73,75]. Extremal 
principles are still the subject of debate and have failed to dethrone 
information entropy from its intuitive role in ecology. 

To summarise, these continuing efforts concerning the principles 
of optimisation have proved to be ineffective for at least two reasons: 
first, it is not certain that an ecological system can be characterised 
by a purely physical and thus thermodynamic approach, and second, 
physics has not yet succeeded in correctly describing open systems that 
are out-of-equilibrium, like most ecosystems [38,76]. 

The failure of thermodynamics in ecology

When thermodynamics emerged as a science in the early 19th 
century, some scientists including Joseph Gay-Lussac and Sadi Carnot, 
were concerned with macroscopic variables such as the temperature, 
pressure, and entropy of a system. At that time, these variables were 
linked with the help of empirical laws. Fifty years later, Ludwig 
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Boltzmann and Willard Gibbs succeeded in establishing a formal 
link of a statistical nature between the thermodynamic grandeurs of 
a system and the parameters of its microscopic constituents [72,77]. 
These developments helped put the concept of information on a proper 
footing, and paved the way for an informational interpretation of all 
physical systems. 

Today we understand the links between the three major classes of 
physical system descriptions: a gas, for example, is generally considered 
as a continuous medium, or a statistical collection of particles, or 
even an assemblage of individual molecules in local interaction. 
In a macroscopic description (coarse scale), averaged quantities, 
such as temperature and density determined by hydrodynamic 
and thermodynamic equations, describe the behaviour of the gas. 
At the mesoscopic level (the level between the macroscopic and the 
microscopic levels), particles are grouped into classes according to their 
speeds and their positions, and we study the changes in their statistical 
distributions, that is, the set of their values. The microscopic approach 
(fine scale) considers gas as a complex system whose elements are 
theoretically discernible. 

In physics, the conditions of transition from one level of modelling 
to another have not yet been formalised (e.g., [78]. The notion of 
macroscopic laws emerging through statistical aggregation from a finer 
level is a new idea that the ecologist community has embraced because 
of its great potential. Indeed, the living system structures may be viewed 
either as complex networks, as more regular and self-similar structures 
or as neutral (unbiased) structures too. In recent times, we have been 
attempting to describe the set of the constituents of an ecosystem or a 
community using a more or less neutral statistical distribution, with 
the aim of deducing their global behaviour. The task, which is more 
mathematical than truly physical, is arduous. By manipulating the 
individuals and the species instead of particles and energy levels, those 
engaged in these attempts hope to discover the abundance distribution 
in the observed elements or species of different ecosystems [27,73]. 

Even though the analogy with the gas particles appears to be 
intuitive, it is hard to work with for at least three reasons [38,76]: first, 
it presupposes a clear separation between the microscopic and the 
macroscopic states of the system (twenty or so orders of magnitude in 
physics, versus the three or four in ecology [79,80]; second, the definition 
of Shannon presupposes the independence of the constituents of the 
system (this may be obvious for particles, but is less so in the case of 
individuals linked with one another in a dense network of ecological 
interactions); and third, in order to be able to explain the maximization 
of information entropy, or of average energy, or of the average number 
of individuals per species, the relevant constraints which may have a 
bearing on them need to be defined beforehand. The transition from 
information entropy to thermodynamic entropy is thus not trivial. 

The distribution of the populations of a species in a community is 
not the only aspect of the ecosystem one may wish to explain. From 
a biogeochemical point of view, the distribution of the chemical 
elements in an ecosystem, for example, is a property that holds 
information about the flow and quantity of the matter present. This 
field concerns stoichiometric distributions [30,81]. The distribution of 
matter inevitably influences the trajectory of the system over time. The 
method of entropy maximization applied here calls for a search for the 
most probable trajectory of the ecosystem [27,73] in the space defined 
by the concentrations of its chemical constituents and organisms. This 
probable trajectory is the one which corresponds to the largest number 
of ways of reaching the observed proportion of the constituents. As 
is the case with populations, this approach is purely combinatorial, 

and therefore statistical, except for the constraints chosen in the 
maximization (e.g., conservation of mass and/or energy). The system 
could thus be considered closed or not, depending on the point of view. 

In brief, probabilistic views, extremal principles and 
thermodynamics all appear to have failed, so far, to provide efficient 
explanations for ecosystem functioning. What we need is not just the 
ability to measure information but to organise the information, the 
importance of which we already observed in system functioning. This 
constraint is quite close to the spirit of the algorithmic information 
theory, which is based on the notion of complexity. What we need 
is not just state variables to measure system states but a link between 
the description of the microscopic dynamics of a system (in our case, 
individuals, species, etc.) and the values of thermodynamic entities such 
as energy and entropy (in our case) which characterise the ecosystem. 

Physics has not had Its Last Word
Statistical physics

Attempts to understand the biological and chemical components of 
ecosystems are purely physical in spirit. They provide the physical view 
that is complementary to the biological view of the briefly mentioned 
populational and evolutionary attempts to understand ecosystems. 
Yet, both the above-mentioned physical and biological approaches 
share the characteristic of being non-spatial. Space is usually implicit 
in them, that is, without any relationship being explicitly defined in 
terms of neighbourhood or constraints on displacements among the 
constituents of the ecosystem. Ecologists have long recognised the 
primordial role of spatiality in the functioning of the ecosystem [59,82]. 
The statistical physics, understood here as the branch of physics using 
probability theory and statistics to solve physical problems, approach 
can be modified to account for spatiality. 

A model that readily comes to physicists’ minds is the Ising model, 
which was developed for ferromagnetic systems, i.e. materials that have 
acquired magnetization [83]. In the Ising model, the constituents are 
atoms given spins, magnetic moments that can point in two opposite 
directions. The new aspect of the Ising model is the fact that each atom 
influences the state of its neighbours and orients their spin in the 
direction of its own. The model predicts the probability of observing 
a certain spatial configuration for which the dominant spin will vary 
from one zone to another of the material. It also explains transitions 
between states in which long distance interactions emerge, as observed 
in other (living) systems [84]. Under certain conditions, the emerging 
spatial configuration is much simpler than might be expected from a 
statistical analysis. 

The model was modified in the following decades to simulate soap 
lather, cell tissues, and other complex materials. Researchers looked for 
parameters analogous to the spin in the state of gas trapped in the soap 
bubbles or in the state of the cells of a tissue in contact with one another 
[85,86]. The constituents are then no longer atoms, but elements of 
another nature, bubbles or cells. These pioneer authors considered 
states which could take several values (and not just “high/up” or “low/
down” as for spin). They learned to characterise dynamic systems at 
the same time as how to modify the distribution of the states. The latest 
cell models even succeed in explaining the cellular adhesion observed 
in certain tissues [86].

These approaches are based on the formalisation of a function 
which summarises the system and is named Hamiltonian. In statistical 
physics, we have long known that by minimizing this function, we can 
configure the state of the most probable system. In a previous paper 
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[87], I proposed writing the Hamiltonian-like function of a forest 
ecosystem using an approach similar to that used in these previous 
works in physics and biology (Figure 3). This simple model, which 
remains phenomenological (non-mechanistic), accurately reproduces 
the distribution of the differences in tree densities between pairwise 
woodlots in an extended forest. This type of distribution is a spatial 
self-organisation characteristic of some forest landscapes. 

Ising’s model and its extensions describe cases of self-organisation. 
The self-organisation concept, studied by Stuart Kauffman, Per Bak 
and their successors in the sciences of the living, corresponds to the 
spontaneous organisation of a system under the effect of the interactions 
of its constituents [46,88,89]. Self-organisation is usually observed when 
patterns emerge in a collective system formed by numerous elements 
of the same type [90]. Self-organisation is also involved during phase 
transitions in physics, for example, when snowflakes of various shapes 
appear close to 0°C. Self-organisation thus often manifests itself as the 
self-similarity (i.e., a structure that resembles its parts, as in fractal 
objects) of certain properties of the system. In the case of tree density, 
self-similarity may be found at the surface or in the borders between 
distinct states of a forest, or of grassland, etc. (Figure 3). 

Self-similarity is a property which emerges due to local influences 
(e.g., the presence of a tree tends to favour the presence of a neighbouring 

tree). However, self-similarity is neither necessary nor sufficient for 
self-organisation, although many studies do not distinguish between 
them [91,92]. For example, the reaction–diffusion model proposed by 
Alan Turing in 1952, explains the organisation of regular spots that 
occur in the coats of certain animals or strips of vegetation without 
resulting in self-similarity [93]. Self-similarity has often been applied in 
ecology [14,79,80,90,91]. However, the approaches based on the self-
organisation concept are still exploratory and rather phenomenological 
today. They are far from constituting proofs or explanatory theories. 

There have been many attempts to interpret certain components 
of the ecosystem as resulting from self-organisation. These attempts 
concerned the distribution of the sizes of individuals in a community of 
species according to their metabolism [44,45], or the distribution of the 
number of species at a geological time scale (biotic), and even the prey-
predator relationships of ecosystems [94]. Concerning the abiotic part 
of ecosystems, the distribution of sub-watershed surfaces and a river 
network in a basin has also been shown [19,95]. Given these recent 
attempts, we would not be far from a general theory of ecosystems, 
but for the fact that they only pertain to certain components of the 
ecosystem. They are based on biocoenosis or on the biotope, only with 
evolutionary or energy considerations but, to my knowledge, never 
both at the same time. The link between these two dominant conceptual 
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frameworks of the thermodynamic and biological (and evolutionary) 
ecosystem, remains to be established.  

Complexity analyses 

Is there a clear homology between physical and ecological systems 
that would allow the use of physical concepts (and tools) in ecology? If 
purely physical descriptions do not fit ecosystem functioning, should 
we shift slightly to other types (e.g. mathematical) concepts? From a 
physical concept, information rapidly became a more mathematical 
(that is, probabilistic and derived of its physical signification) concept 
which also appeared to be relevant in ecology. For example, it may be 
possible to quantify ecosystem complexity in terms of information. 
Complexity is here understood as the emergent behavior of any 
system whose components interact in multiple ways and follow local 
rules. But how can we measure information? What is information 
(and complexity) in ecology? Several information measures have been 
proposed in the past [38]. More recent measures, based on algorithmic 
and logical complexities, may reveal themselves to be fruitful in 
preliminary attempts. 

Starting from the information (Shannon) theory [57], we have 
seen that some limits appear to be prohibitive. To base informational 
measures on probabilistic (or probabilistic distribution) principles is not 
sufficiently precise to grasp the presumed complexity of informational 
fluxes within an ecosystem. In particular, the ordering (organisation) of 
information, which appears to be crucial to the functioning of the system, 
also needs to be carefully quantified. The organisation constraint is the 
motivation for the algorithmic information theory. The Kolmogorov-
Solomonov algorithmic complexity grasps part of the inner ordering of 
the data [96,97]. The algorithmic complexity suggests quantifying the 
complexity of a system (object) using the shortest program that could 
re-create it. Such a definition of complexity requires a specific model of 
data organisation, of regularities, symmetry, alignment and/or pooling. 
Indeed, the lack of specific regularity in data would prevent them from 
being shortened efficiently. This measure has only occasionally been 
applied to ecosystems [19], partly because the shortest program needed 
is practically unreachable. 

This measure appears not to be in perfect agreement with our 
intuitive perception of complexity. Indeed, algorithmic complexity 
describes random data as highly complex, as they are almost impossible 
to shorten into a condensed program to (re)produce them [96,97]. 
Other complexity measures were then proposed to avoid this limitation. 
For example, logical depth measures the complexity of an object by the 
time needed to execute this shortest program to reproduce the object 
[98,99]. The difference between algorithmic complexity and logical 
depth is subtle but, for the first time, makes it possible to take the 
history of the object, i.e. the time needed to build the complex system, 
in account. It does not only consider the state of the system or object at 
a specific date. Yet, logical depth remains a theoretical concept and is 
still rarely used in concrete examples of complexity quantification [98]. 
In this line of thought, I have proposed a way to apply this concept to 
ecosystem quantification [19], although it is not sure that this kind of 
complexity will fit requirements for the quantification of complexity 
and information in ecology. It remains a global and fixed picture of the 
(eco)system, in which the inner functioning of the system under study 
is still missing. 

In conclusion, it seems that ecosystem information is not accessible. 
To understand this, let us assume that we dispose of flexible and efficient 
means to measure the complexity and/or information of a system or 
an object. Although it would be almost if not entirely impossible to 

measure all parts of the system, we would still need to concretely apply 
it to an “ecosystem quantification”. One way I proposed is to build a 
numerical model of the ecosystem that is as realistic as possible, (e.g., 
after careful calibration and validation using observed systems), and 
to then quantify the model instead of the real system [19,99]. Any 
kind of ecosystem model may be appropriate here, although more 
exhaustive and more integrated models are highly recommended 
here. Like every model, the ecosystem model will be a pale copy of the 
real ecosystem, but one may hope it will mimic the object concerned 
with sufficient accuracy to reproduce its functioning and successive 
changes. With such a model, it would be possible to dissect the different 
processes involved in the functioning of the whole and to measure the 
information stores and fluxes it hosts separately. 

Graph analyses   

A wide range of other physical (and mathematical) concepts can 
certainly be borrowed by ecology. One concept which is currently 
attracting increasing attention is the graph concept, inspired by 
graph theory [100,101]. Graph theory is here understood as the area 
of mathematics which studies pairwise relations between objects 
(and thus displaying graph structures). To apply the graph concept in 
ecosystem ecology involves choosing certain ecosystem constituents, 
defining them as nodes, linking them by a set of edges wherever they 
interact, and then studying the (simplified) graphic representation 
of this ecosystem (Figure  4). For example, a graph can be used to 
represent the topological structure of a community of species, and the 
dynamics of their interactions [11,28,102]. 

When applied to trophic (i.e. feeding) or non-trophic interaction 
networks, this approach has enabled fruitful studies. Any network 
is inherently modelled as a graph, and mutualistic communities and 
plant-pollinator systems are among the many networks of species’ 
interactions which have been successfully studied using cutting-edge, 
network-based models [20,28,103]. However, these models have been 
found to overlook abiotic interactions, or to reduce them to the status 
of simple external input-output interactions. A more balanced view 
between biotic and abiotic components is required, in practice, and is 
accessible today [20]. 

In the spatial domain too, a wide range of land cover mosaics 
can be represented by a graph, and their structural and connectivity 
properties have been studied in landscape ecology. Such studies, which, 
in a sense, combine interacting ecosystems in the same landscape, have 
been conducted in both marine and terrestrial landscapes [60,63]. This 
intuitive way of summarising the connectivity of space appears to be 
sufficiently powerful to understand the fluxes of matter and organisms 
in any kind of mosaic. Yet, here again, a graphic representation does not 
appear to be the best way to understand landscape functioning, because 
graphs favour structural rather than functional analyses [104]. While 
it is perfectly possible to capture function and processes in a specific 
graph, so far, in ecology, graphs have remained frozen, and at best 
compared with each other in a diachronic analysis. Studies of changing 
graphs, for instance to grasp the appearance/disappearance of species 
or landscape elements remain rare [20,105,106], partly due to lacking 
data over the long term. This emphasises the need for more functional 
modelling, and not only frozen analyses, in ecological graphs. 

Discussion 
The ecosystem: a physical system or a biological system?

We have seen that a conceptual problem rapidly arises in the 
study of ecosystems. Ecosystems are a combination of, say, at least 
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five components of highly different nature: flora, fauna, soils, the 
atmosphere, and human components. Furthermore, these components 
partly belong to living (called “biotic”) and non-living (“abiotic”) 
domains and interact at different scales. Hence, ecosystems are a priori 
simultaneously. constrained by biological and physical laws, including 
natural selection and thermodynamics [18,19,46]. This observation 
suffices to explain why, so far, each component has been studied 
separately or in pairwise interactions, focusing on either the physical or 
biological processes at stake. In a sense, this kind of “third state” of the 
matter, between purely physical and purely biological natures, makes 
them difficult to understand [12]. The present definition is still unable 
to include all the complexity of observed ecosystems, and in particular 
human related processes [1,2]. 

Facing the physical view in ecology, biologists are sensitive to both 
the trophic and non-trophic interactions which occur in ecosystems, to 
the spatial distribution of the biotic (living) communities, and to their 
collective genotype. These properties are rather complex, and their 
dynamic articulation remains to be investigated in depth [105,106]. The 
living component of the ecosystem is a full-fledged biological system. It 
follows the rules of evolution, with a more or less gradual change in the 
species it hosts in the long term. Since Darwin, it has been shown that 
evolution is the result of random mutations of genomes under selection 
pressures which often occur in the environment [107]. A piece of 
genetic information which enables organisms to better adapt to their 
environment has a better chance of being transmitted to following 
generations, and therefore of being retained. Broadly speaking, the 
same goes for higher level of assemblages such as ecosystems, all of 
which are made up of genomes [38,107,108]. 

Early models only tackled the biotic components of the ecosystem, 
and thus defined the ecosystem as a community of different interacting 
species. Lotka and Volterra [109] built a demographic model of two or 
more species in prey-predation interaction [109]. However, at broader 
organisational levels (and scales), the trophic network can be studied 

as a whole [47], providing concepts such as trophic dynamics, which 
are often linked to the topological structure of the trophic network 
[103]. Other networks of species interactions have also been studied 
including mutualistic communities and plant-pollinator systems, more 
recently with cutting-edge network-based models [20,28]. 

An ecosystem is neither a strictly physical nor a strictly biological 
system [69]. It is a hybrid system consisting of elements that require the 
intertwining of two descriptions, one with a basis in thermodynamics, 
the other in natural selection. Why not build a third description? I do not 
subscribe to the notion endorsed in certain studies that, for the sake of 
simplicity, the ecosystem is reduced to its biotope or to its biocoenosis. 
These two views, either a species centred view or a matter-and-energy 
view, have long been the subject of debate in ecology [13,21,46]. It is 
time to merge these two views into more integrated views and models. 
This implies accounting for the widest range of processes, of different 
natures including individual interactions, physical fluxes, and spatial 
relationships, among others [20,31]. This also implies including 
populations (i.e., organisms) as well as physical entities (concentrations 
of gases and chemical elements) with similar weights in the same model 
[55], not only one occasionally disturbing the other one. The question 
is: are physical concepts still able to reconcile these different points of 
views? 

What next? 

In conclusion, I have reviewed some landmark physical concepts 
and theories used in ecology, and described how they helped advance 
our understanding of ecosystem functioning. I do not claim this 
list is exhaustive, as other review papers partly covered this issue 
[14,17,22,23], but it suffices to provide a conceptual link between 
physical frameworks and ecosystem ecology. Here, I also wish to 
emphasise that discussing the use of physical tools (e.g. differential 
equations) and models is beyond the scope of this paper. Here follows 
a short list of points summarising the main conclusions of this article: 
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Figure 4: Schematic diagram of a typical ecosystem in an extended (a) and simplified (b) version. Most ecosystems can be represented by a relational 
graph of the five main components (fauna, flora, atmosphere, soils, humans) (a), then simplified into an interaction network which is easier to handle (b). 
Dominant interactions are highlighted with edges between the ecosystem nodes, with five colours representing their different natures (b, bottom). Nodes 
may be absent or present in the graph, and their pairwise or reflexive interactions may play a role (or not) in the ecosystem functioning.
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• I have identified a first set of physical theories and concepts 
applied to ecosystem ecology, namely thermodynamics, statistical 
physics and information theory, by way of energy, combinatorial 
information and entropy (possibly mixed) concepts (Figure 5). 
These theories are historically linked and are still used for ecological 
applications, often related to ecosystems. Today, ecologists may 
conclude that the failure to apply this set of theories to the ecosystem as 
a whole was only temporary [29,38]. The apparent similarities between 
informational, physical and combinatorial entropies led us to hope that 
these concepts could also be applied to ecological systems, and would 
lead to a deeper understanding [21,22,59]. But they did not. 

• This does not mean that some ecological processes, as parts 
of ecosystem functioning, have not been finely understood with the 
help of physics. Nor should it be concluded that physical approaches 
will not lead to other fascinating discoveries in the science of ecology in 
the future. One possible track in this direction pertains to complexity-
related theories (Figure 5). In this review, I have tried to show how the 
iterative (self-similar) and non-linear processes underlying ecosystem 
dynamics illustrate relationships between self-organisation, dynamical 
systems and complexity theory [46]. Another potentially interesting 
concept related to complexity approaches concerns the topology or 
graph-oriented representation of ecosystems [19,28,68]. Will this 
recent application of a physical-like concept succeed where entropy 
and information concepts failed? 

• Despite long lasting efforts, physics alone will probably not 
suffice to explain ecosystem functioning. The reason is now beginning 
to emerge: ecosystems are simultaneously physical and biological 
systems [18,19,29]. For the same reason, ecosystems will likely not 
be understood using purely biological and evolutionary approaches 
(not detailed in this paper). Consequently, we have the responsibility 
of finding a way to encompass this duality. Is physics combined with 
biology more likely to succeed? My intuition and that of some of my 

colleagues suggests that we should rather look for radically new ways 
of analysing this specific state of matter [20,38,55]. How to proceed? 

• One way would be to look for some more generic concepts 
and more versatile tools to be used with ecological entities of different 
natures. Future notions should encompass entities that are as different 
as physicochemical, biological and human components (and processes). 
Today, many ecologists believe that information, graph or complexity 
concepts could help to achieve this multi-purpose objective (Figure 
5). At the same time as identifying such generic concepts, we should 
develop a set of tools to handle and test them on observed ecosystems 
to answer the following questions. How should ecosystem information 
be handled? How can ecosystem complexity be quantified? Combining 
pattern- and process-oriented approaches will definitely help grasp 
ecosystem (structural) properties as the same time as ecosystem 
functioning. 

• Ecosystems embed a large number of interdependent 
interactions which need to be disentangled to enable precise 
understanding [20,31,46]. To analyse a state or even several states of 
the ecosystem is rather like analysing a person only using photographs: 
it provides an incomplete, instant but ultimately erroneous view of 
the person. Today we need to invest in more functional, dynamical 
and integrated analyses of ecosystems. For example, to represent an 
ecosystem with a graph is a useful preliminary step, but to combine 
the fluxes of matter and energy simultaneously to a changing topology 
is likely the next necessary step [20,39,110]. Work towards achieving 
this objective has already begun, although integrated models of the 
ecosystem are still rare [20,28,105]. The duality problem falsely suggests 
analysing either certain biotic (e.g., species community) or abiotic (e.g., 
environmental factors) components of the ecosystem, thereby reducing 
the study of the other parts to negligible components. 

A book would not suffice to explore all the links between physics 

• Metabolic theory of ecology

• Species energy theory

• Maximum entropy theory of 

ecology

• Landscape theory

• Neutral theory of biodiversity

• Systems theory

• Network theory of ecology

Thermodynamics

Statistical physics

Information theory

Complexity

Dynamical systems

Graph theory

Physical theories Ecological theories

Underlying Concepts

Energy & 
Entropy

Combinatorial 
information

Potential 
function

Self-similarity

Topology

Figure 5: An attempt to articulate the various theories and concepts used in ecology, so far. We will probably observe at least a gradual temporal shift 
between concepts applied to capture ecosystem functioning. In parallel, thermodynamic and complexity related theories appear to be complementary 
(see discussion). The most obvious (conceptual) relationships between physical theories are indicated by dashed arrows, while the corresponding 
concepts are displayed (in blue) in the background.
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and ecology, even though such an in-depth survey would likely 
benefit reflection on the successes and failures of ecosystem ecology. 
Many difficulties face ecologists who are trying to understand and 
manage ecosystems today. I intentionally avoided some debates such 
as the issue of ecosystem boundaries [18]. Neither did I mention 
what in another study, I called the “short-term view” we, as humans, 
have of ecosystems and their probable long-term development [20]. 
Indeed, some pioneer works already observed the highly changeable 
components of ecosystems [13,21]: continuously hosting new species 
and acquiring new area, losing some communities and some genomes, 
ecosystems undergo long term “development” (i.e., structural changes) 
close to those  about the organismic nature of the ecosystem, which 
were the subject of long debate. In turn, these changes in composition 
have a direct impact on changes in properties and behaviour [111,112]. 

Today, there is no doubt that ecosystems are objects with specific 
and critical history, sometimes exhibiting sharp changes in the long 
term. For all these reasons, we need to build innovative and generic 
concepts to understand them. This is one of the main challenges facing 
ecology today.    
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