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Introduction
Human aging takes its toll; after age 65, a complex network 

of genetic and biochemical changes correlate over activates brain 
microglia and astrocytes [1]. Multiple signaling pathways suffer defects 
that evoke complex neurodegenerative phenotypes. Among these are 
the many neuronal pathways affected by deregulated Cdk5 (citations).

Normally, Cdk5 kinase, a Ser/Thr kinase of the cyclin dependent 
kinase family is essential for neuronal development, neuronal migration, 
cortical layering, synapse formation and behavioral functions [2]. The 
kinase targets a large number of neuronal protein substrates with proline 
directed Ser/Thr residues, which accounts, in part, for its importance in 
the nervous system. Its role stems from its regulation by neuronal-specific 
activators proteins, p35 and p39 instead of cyclins [3,4]. Cdk5, when 
isolated from the bovine brain is found in three states, as an large inactive 
complex in the cytoplasm, as an active Cdk5/p25 cytoplasmic complex 
and as part of a multimeric 650 kda complex bound to membranes by 
the p10, N-terminal myristolated domain of p35 [5] (Figure 1). In the 
brain, expression of p35 and p39 increases with development till adult; in 
fetus and adult p35 is phosphorylated by Cdk5 at Ser 8 which localizes a 
cytoplasmic Cdk5/p35 whereas in the fetus, phosphorylation of tyrosine 
138 by tyrosine kinases, results in degradation of p35 via the proteosome-
ubiquitin pathway [4]. In the adult, however, Cdk5/p35 is restively 
more stable since neither site is phosphorylated as p35 acts to bundle 
microtubules and actin [6,7]. These regulatory options have profound 
effects on the role of Cdk5 in health and disease [8-11] (Figure 1). 

It is intriguing that in several neurodegenerative disorders (AD, 
ALS, PD, HD) a hyperactive Cdk5 is detected in the brain at autopsy 
[6,7] and has been shown to be upstream of the pathways leading to 
plaques, tangles and inflammation in cultured neurons and model mice 
[8-11]. It does so when p35 is not phosphorylated and has been cleaved 

due to neuronal insults increasing intracellular calcium concentration 
inducing activation of calpain and cleavage into the myristolated p10 
fragment and p25, a deregulated hyperactive Cdk5 [12]. It is assumed 
that aging –induced stresses affecting mitochondrial function, synaptic 
activity and the innate immune system of the brain may reflect upstream 
hyper activation of Cdk5/p25 or more likely, an interactive coupling 
of defects in multiple pathways. Although elevated levels of p25 have 
been reported in brains of AD, PD and ALS patients at autopsy, some 
laboratories have failed to confirm these observations; they show a 
downregulation of p25 instead [13,14] and more recently, a reduction 
of both p25 and p35 [15]. Although diverse postmortem changes may 
account for the differences, to date, there has been no resolution. 

Hypothesis: Cdk5/p25 Activation and the Etiology of 
Neurodegeneration

Of the many metabolic pathways compromised by aging, several 
have been identified as initiating neurodegenerative pathologies 
such as AD. The amyloid cascade hypothesis, for example, proposes 
that aging, via mutation or stress, results in Abeta accumulation, 
leading to misfolded toxic oligomers which induce inflammation, 
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failing mitochondria, synaptic degradation, plaques and tangles [16]. 
A mitochondrial cascade hypothesis cites aging defects (mutations 
and stress) in mitochondrial metabolism as initiating events leading 
to defective mitochondria, oxidative stress, kinase activation, 
inflammation, DNA damage and the cognitive decline. Alternatively, 
evidence for the upstream role of hyperactive Cdk5/p25 has been 
shown in a number of different studies of cultured cells and model mice 
and has led to a hypothesis that continues to be tested (Figure 2). 

The model assumes that neuronal insults and aging-induced 
upregulation of neuronal p25 is one of several etiological events 
triggering neurodegeneration and acts as age related mutations itself. 
The model proposes that this event leads to misfolding of proteins, 
oxidative defects in mitochondrial dysbioenergetics, inflammation, 
synaptic loss, plaques, tangles neuronal death, and behavioral decline 
[12]. The initiating event is a stress-induced upregulation of p25 
by calpain cleavage of p35 into the P10 and p25 fragments [12]. P25 

Figure 1: Regulation and deregulation of Cdk5 in physiology and pathology

 Figure 2: Signal transduction processes regulating neurodegeneration.
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forms a more stable, deregulated cytoplasmic Cdk5/p25 hyperactive 
complex [12,17,18]. This toxic complex that contributes to metabolic 
events leading to neurodegeneration. In addition to cytoskeletal 
protein hyperphosphorylation, Cdk5/p25 hyperphosphorylation of 
other enzymes such as mitochondrial and other metabolic enzymes 
activities also affected and to enhance toxic effects. Perhaps the best 
example of p25-induced toxicity and progression of the AD phenotype 
is the p25 transgenic model mouse (p25Tg) [17,19,20] revealed all the 
AD phenotypes. We used bitransgenic (CK-p25Tg) mice (males and 
females) in which forebrain CK-p25 expression was tightly regulated 
by the tet on/off system facilitated by the CamKII (CK) promoter [17]. 
The tet-off system was induced by dietary alteration in doxycycline-
supplemented food in which CK-p25 expression was suppressed in 
the presence of doxycycline. Calmodulin-dependent protein kinase II 
(CaMKII/CK) is a promoter used to activate the expression of the CK-
p25 gene in cortical and hippocampal region of transgenic mice (p25 
Tg). It was shown that CK-p25Tg mice develop significant neuronal 
loss in the cortex and hippocampus and display neurodegeneration 
and pathological tau hyper phosphorylation when p25 expression is 
induced. These mice are identified as p25Tg (over expressing). High 
p25 expression and elevated hippocampal Cdk5 activity has been 
observed within 1 weeks after induction.

All mice were developed and raised in the presence of doxycycline 
(DOX 1 mg/g in food). To induce CK-p25 expression, the mice were fed 
a normal diet, DOX-off. To inhibit p25 production, the mice were again 
fed a doxycycline diet. All experimental cohorts were treated under the 
same conditions and fed doxycycline diet for the same period of time 
Note that all animal procedures were performed in accordance with the 
NIH animal care committee’s regulations.

Design and Synthesis of TFP5
TFP5 is a truncated portion of p35 (activator of Cdk5), which 

extends 24 aa residues in length (Lys254–Ala277) conjugated with 
an 11-aa modifying peptide derived from the trans-activator domain 
of TAT protein at the C terminus (to facilitate passage through the 
blood-brain barrier), while FITC, fluorescein isothiocyanate (a green 
fluorescent tag) with linker GGG, was attached at the N terminus (to 
serve as a marker). A scrambled peptide (Scb) was used as a control 
to TFP5 (sequence shown below). Peptide 2.0 (Chantilly, VA, USA) 
commercially synthesized both TFP5 and Scb peptides which were 
used after dissolving both in saline or double distilled water.

Sequences used were as follows: 

TFP5, 
FITCGGGKEAFWDRCLSVINLMSSKMLQINAYARAARRAARR 

Scb peptide, 
FITCGGGGGGFWDRCLSGKGKMSSKGGGINAYARAARRAARR

Intraperitoneal (I.p.) injection paradigm

Five cohorts of mice were used: vehicle-injected WT, CK-
p25Tg+DOX, CK-p25Tg-DOX, TFP5-injected CK-p25Tg-DOX and 
Scb-injected CK-p25Tg-DOX. After 12 weeks, the 3 mutant cohorts 
were taken off DOX to activate the expression of CK-p25. All five 
cohorts were age-matched and WT, CK-p25Tg+DOX, CK-p25Tg-
DOX was treated with i.p. injection of vehicle, while another group 
of -DOX mutant mice were injected with 40 mg/kg/d TFP5. As an 
additional control, a cohort of –DOX mutants was injected with 40 
mg/kg/d Scb peptide. All five cohorts were injected 3 days/week on 
week’s 13-17 for a total of 18 injections. All the mice were subjected to 

behavior analysis on week 18 and the mice were euthanized on week 19 
when brain tissue was harvested for biochemical analysis. Based on the 
observation that injection of 3000 mg/kg/day of TFP5 into wild type 
mice in 5XFAD studies was not toxic, had no effect on body weight, 
behavior, appearance and longevity [21]. 

Conception, development and post-natal growth (at least to 12 
days) are normal in the presence of doxycycline whereas removal of 
doxycycline induced over-expression of cortical p25, increased Cdk5 
activity, neuronal loss, and progression to an AD-like phenotype with 
Ab plaques, hyper-phosphorylated tau tangles and inflammation 
[17,19]. It should be noted, in this transgenic, up regulation of p25 
and hyperactivity of Cdk5 initiate inflammation via phosphorylation 
and activation of neuronal phospholipase 2A followed by astroglyosis 
and microgliosis which precede Abeta accumulation and tau 
phosphorylation [19]. In fact the situation has become even more 
confounding with the mixed results from other p25 mouse transgenic 
initiated at fertilization [22,23]. Robust p25 expression and Cdk5 
activity at 4-5 months correlated with tau phosphorylation, axonopathy, 
neurodegeneration and severe motor defects but no evidence of other 
AD phenotypes. Moreover, later studies of the doxycyclin-regulated 
p25tg only added to the confusion; two roles for p25 were revealed, 
a low-dose, positive physiological role in memory formation, while a 
higher sustained p25 elevation induced neurodegeneration and AD-
like phenotypes [24]. In our later examination of this transgenic, it is 
the latter response on which we focus.

p35-Derived Peptides as Therapeutic Candidates for 
Neurodegenerative Disorders

Clearly, Cdk5/p25 is a potential therapeutic target for 
neurodegeneration [25-27]. Although roscovitine and related 
compounds have been proposed and evaluated, their effects are non-
specific as they bind the common ATP site shared by other Cdks and 
most other kinases. Our lab has taken a different approach based on a 
study of truncated fragments of the p35 regulator [28]. Two peptides were 
identified, CIP (126 a.a) and a smaller peptide p5 (24 a.a.), derived from 
the p25 domain of the parent sequence, exhibited vigorous inhibition 
of Cdk5/p35 and Cdk5/p25 activities in test-tube experiments [29-
31]. Surprisingly, however, in cultured cortical neurons, the peptides 
inhibited only the Cdk5/p25 complex and spared the Cdk5/p35 kinase 
which retained most of its activity [31-33]. Here,E18 cortical neurons 
stressed by toxic Abeta display an AD phenotype, hyperactive Cdk5/
p25, hyperphosphorylated tau and neurofilaments, Abeta accumulation 
and apoptosis. These effects are reduced when cells are incubated in 
different concentrations of p5 or CIP [11,29,32]. The specificity of 
peptide inhibition was dramatic; whereas Cdk5/p25 activity was 
inhibited; Cdk5/p35 activity was unaffected as were the activities of 
cyclin dependent kinases [32]. 

Wherein does this specificity reside? We assume that the inhibitor 
peptides compete with the physiological regulators for the catalytic 
site on the kinase, as suggested by computer modeling experiments 
and in the test-tube, using purified enzyme complexes, inhibition by 
peptides is effective and comparable for both complexes. The situation 
in cells, with numerous interacting proteins, differs fundamentally, 
however. It has been demonstrated that p35, with its p10 N-terminal 
“domain” interacts with other proteins such as microtubules, actin, 
munc18 and others forming a multimeric complex [6,7,31,33,34]. We 
suggest that binding of macromolecules to the p10 domain favors a 
p35 conformational change such that it competes successfully for the 
Cdk5 catalytic site and sustains activity. P25, without the p10 domain, 
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fails to compete successfully and is displaced by p5 which inhibits the 
kinase. An initial test of the hypothesis involved the incubation in vitro 
of microtubules to both Cdk5/p35 and Cdk5/p25 complexes followed 
by the addition of p5. Only the Cdk/p25 activity was inhibited [33]. A 
more extensive test of the role of the p10 domain in cultured neurons 
was carried out with Munc 18 a substrate of Cdk5 at the synapse 
[35,36]. Here, too, the activity of the Cdk5/p35 complex was spared in 
the presence of Munc 18 [31]. A key control was the observation that 
cortical neurons transfected with p67 siRNA exhibited inhibition of 
Cdk5/p35 in the presence of p5. Finally, the role of the p10 domain was 
confirmed in a pull-down experiment with GST-p10 which exhibited 
binding of Cdk5, p35 and p67 [31]. 

Therapeutic Effects of Peptides in Model Mice Showing 
Neurodegenerative Disorders

The real test of the hypothesis relies on studies of the effect of peptide 
treatment on those phenotypes in model mice resembling human 
disorders such as AD, ALS, PD and HD. A large, diverse selection of 
model mice has been engineered for each neurodegenerative disorder 
[37,38]. Most mouse models are prepared by introducing mutant 
human genes responsible for specific phenotypes. In AD, for example, 
transgenic bearing several known mutations of the APP pathway have 
been constructed which show a progression to AD resembling the 
phenotype in humans [38]. For the most part, most mouse models do 
mimic pathologies characterizing specific disorders. Behavioral criteria 
(memory, cognition, etc.), however, are difficult to duplicate in mice for 
many obvious reasons [37-39]. This raises the question as to whether such 
studies provide insight as to the nature and mechanisms of the human 
syndromes and may explain why clinical trials based on animal studies 
have been disappointing. Answers have been sought by comparisons 
of transcriptomes of brains from human patients and mimetic mouse 
models. Unfortunately, these reveal profound differences in the “up and 
down” expression of a wide range of genetic sets [40]. In general, mice 
are different from humans. Significantly, the authors report that mouse 
and human aging transcriptomes are more similar which suggests that 
overexpression of human gene mutations in transgenic mice distorts 
what is fundamentally natural aging. Nevertheless, the authors urge us 
to continue ways to improve the animal models.

Our approach is to carry on with tests of the hyperactive C

Cdk5/p25 hypothesis. We do so based on evidence of upregulated, 
deregulated Cdk5/p25 expression in AD brains [41], Cdk5/p35 activity 
(immunoprecipitated) associated with Lewy bodies in brains of 
Parkinson’s and ALS patients [42-44] and in our own work showing 
upregulation of p25 in brain and spinal cord of five ALS patients with 
matched controls (unpublished data). Results of our studies of the 
therapeutic effects of the two peptides in mouse models of AD, PD and 
ALS are consistent with the proposed hypothesis.

Proof of Concept; the CK-Tgp25 Transgenic
As previously indicated, the p25Tg transgenic mouse, when 

induced by doxycycline removal, exhibits a significant upregulation 
of p25 and Cdk5 activity. In the earlier study most data were reported 
after 5-12 weeks of induction and showed upregulation of Cdk5/p25 
activity correlated with tau phosphorylated aggregates, a neurofibrillary 
pathology [17]. A later study recorded earlier time points with Cdk5 
activation evident after one week induction [19]. Virtually at the same 
time, inflammatory signs were seen with an uptick of GFAP at one 
week, cytokines and chemokines of microgliosis and phosphor-tau 
after 4 weeks induction, followed by Abeta, most evident at 8 weeks 

post induction. To study the therapeutic potential of the larger CIP 
peptide, mutants with p25Tg AD-like phenotype were crossed with 
normally appearing CIP double transgenics (producing TetraTg-
CIP mice controlled by a CAMK2a promoter) over expressing p25 
in a background of CIP inhibitor peptide overexpression in the brain 
[45]. Doxycycline removal for 1 weeks initiated overexpression of 
p25 and Cdk5 hyper activation in forebrains of p25Tg mice which 
were diminished in the TetraTg CIP x p25 Tg-expressing mice as 
was inflammation, tau phosphorylation and amyloid deposition; AD 
pathology was significantly reduced as were neuronal cell loss and 
neurocognitive defects. This is the first successful therapeutic targeting 
of Cdk5/p25 hyperactivity in vivo while sparing effects on Cdk5/p35 
activity. 

Analysis of the therapeutic effect of the smaller p5 peptide in the 
same p25Tg model mouse required a different approach. Here, the p5 
peptide, modified for penetration of the blood-brain barrier as TFP5 
was injected intraperitoneally [21,46]. 

Control and experimental animals were maintained on doxycycline 
for 12 weeks, then doxycycline was removed and a seriesof TFP5 
injections (weeks 13 to 17) were given to p25Tg animals while controls 
received an identical series with scrambled peptide at the same 
concentration. Untreated animals showed the induced increase in p25 
overexpression and Cdk5 activity whereas the TFP5 treated cohorts 
exhibited a 40% reduction in activity. They also showed reduced tau 
and neurofilament (NFM/H) phosphorylation, reduced inflammation 
and amyloid beta expression accompanied by improved behavioral 
function. Significantly there was an improvement in LTD expression, 
a sign that synaptic activity had been restored [46]. These studies 
suggest that neurodegenerative disorders expressing deregulated Cdk5/
p25 may be therapeutically targeted with an appropriately designed 
inhibitor peptide derived from p35, the endogenous regulator in the 
brain.

The 5XFAD AD Model Mouse; the Effect of P5 Therapy 
A different mouse model, familial 5XFAD, is a transgenic expressing 

human APP and PSI mutant genes (a total of five mutations). It 
overexpresses Abeta and amyloid plaques and exhibits significant 
defects in spatial memory and behavior [47]. Tau hyper phosphorylation 
and tangles are also evident as well as Cdk5/p25 hyperactivity. There 
is evidence that Abeta is toxic and induces tau hyper phosphorylation 
via activation of Cdk5/p25 in cortical neurons [29,33]. Moreover, 
intracerebroventricular injection of A beta in a mouse model hyper 
activates Cdk5/p25; it appears that Cdk5/p25 activation and Abeta 
are part of a circular feedback loop. For example, overexpression of 
p25 increases Cdk5-induced BACE1 transcription and the abnormal 
processing of APP [47,48]. Evidence from the effect of p5 peptide on 
the p5 overexpressing p25Tg transgenic does show the linkage between 
these metabolic pathways. Does it exhibit the same effect in the amyloid 
overexpressing model? 

An injection protocol with TFP5 was established for this transgenic 
[21]. Control and experimental animals (6 months to 12 months of 
age) were injected intraperitoneally with and without TFP5 for three 
consecutive days (40 mg/kg) followed by a day of behavioral tests and 
sacrifice to dissect brains for biochemical and immunocytochemical 
analyses. TFP5 was shown to penetrate the blood-brain barrier; 
fluorescence was seen in cortex, hippocampus and cerebellum (as well 
as other organs) after four days. Significantly, after four days the hyper 
activation of Cdk5 was reduced in TFP5 treated animals to normal 
WT values; scrambled peptide controls had no effect. Coupled to 
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these changes were significant improvements in behavioral tests (e.g. Y 
maze) as well as reductions in inflammation, hyper phosphorylation of 
neurofilaments and the deposition of amyloid plaques [21].

Neuronal apoptosis was also decreased by 37% in the TFP5-treated 
mice. Here, too, the AD phenotype in this mouse model was successfully 
reduced only seven days after the last treatment, without affecting 
the endogenous Cdk5/p35 kinase activity. Moreover, by targeting 
the hyperactive Cdk5/p25 kinase, the Abeta phenotype is affected, 
consistent with the view that kinase activity and APP processing are 
linked, perhaps because Cdk5 phosphorylates the thr668 site on APP, 
a step in Abeta processing [48-50]. Differences in phosphorylation 
patterns at this site between Cdk5/p35 and Cdk5/p25 were reported, 
the former phosphorylating both mature and immature APP while the 
latter only increased phosphorylation of the immature form [47]. Hence, 
by targeting Cdk5 we show specific effects of the peptide inhibitor on 
other pathological pathways underlying neurodegeneration.

Parkinson’s Disease: Effect of P5 Peptide on the MPTP 
Mouse Model

Parkinson’s disease is one of the consequences of aging and 
is increasing globally as the world population ages. This disorder, 
specific to substantia nigra cells, is also characterized by aggregate 
accumulation, synuclein-containing Lewy bodies that lead to neuronal 
death. Synuclein aggregates reflect dysregulation of the autophagy 
pathways that modulate the degradation of misfolded and abnormal 
proteins [51]. It is noteworthy that these aggregates also contain Cdk5 
[42,43,52]. Moreover, post mortem studies of PD brains show evidence 
of calpain-induced Cdk5/p25 activation [53]. Mutations in a human 
ubiquitin-protein ligase, Parkin, also contribute to the AD phenotype 
[54,55]. Parkin, hyper phosphorylated by Cdk5, become dysfunctional 
and leads to the accumulation of damaged proteins [56]. As in AD, 
Cdk5 plays a key role in etiology of the PD phenotype. 

Several mouse models of Parkinsons have been produced, e.g. 
transgenics overexpressing a dominant alpha synuclein mutant), but a 
more common model develops after treatment with a drug, 1-methyl-
4phenyl-1,2,3,6-tetrahydropyridine (MPTP) which specifically destroys 
dopaminergic neurons in the substantia nigra of the brain leading to 
neuronal death [57]. Neuron loss is correlated with the overexpression 
of Cdk5 which may be responsible for mitochondrial dysfunction and 
oxidative stress, coupled to deregulated protein folding and autophagy 
[58]. 

We have used this PD model to study the effect of TFP5 and TP5 
peptides on the expression of the abnormal Parkinson’s phenotype 
[59,60]. Induction of hyperactive Cdk5/p25 was confirmed in 
mesencephalic cultures treated with MPTP, which was significantly 
reduced when cells were pretreated with TFP5, as was cell survival. 
Inflammation of primary mesencephalic cells was also ameliorated by 
peptide pretreatment, before incubation in MPTP. More to the point, 
potential therapeutic effects in vivo were tested in a four-dose MPTP 
model mouse [61]. Animals were injected intraperitoneally with TP5/
TFP5 at a high dose (80 mg/kg) for 9 days; on day 2, however, they 
had received the four doses of MPTP. Here, too, Cdk5/p25 activity was 
reduced in the substancia nigral cells, as was inflammation, dopamine 
levels and cell death. No protection was afforded by pretreatment with 
the control scrambled peptide. 

It is not clear that Cdk5/p25 activation is the upstream trigger 
for induction of the MPTP phenotype; its mechanism of action is 
confounded by the fact that cross talk between Cdk5 and other kinases 

is a common feature in the brain. Moreover, the numerous substrate 
targets of Cdk5 may be affected [62] including some implicated in 
MPTP pathology involving mitochondrial function such as cytochrome 
c release, caspase-3 activation and reduction of the anti-oxidant Prx2. 
These aspects of mitochondrial activity were protected after TFP5 
treatment. 

It should be pointed out that transcriptome analyses of PD mouse 
brains as contrasted with human PD transcriptomes differ significantly, 
at least with respect to the more than 250 unregulated genes in human 
brains that are not matched in the mouse models [40]. Downregulated 
genes, however, exhibit a greater match. These discrepancies between 
mouse and human characterize the transcriptome data for other 
neurodegenerative disorders [40], which may account for the fact that 
primate models for PD have been introduced [40]. Future tests of the 
peptides in these primate models of PD might bring us closer to clinical 
trials in human patients.

Brain Ischemia; Cdk5 Activation and Regulation by P5 
Peptides

Stroke, a leading cause of death world-wide, is responsible for 
short and long term cognitive impairment, i.e., declines in memory, 
learning and executive functions. There are reports that Cdk5 activity is 
upregulated in human stroke calpain upregulation and hyper activation 
of Cdk5/p25 have been identified in animal models of ischemia and 
may be responsible for downstream pathologies associated with 
neuronal death [63-65]. Accordingly, hyper activated Cdk5/p25 has 
been suggested as a target for therapeutic intervention after a stroke 
[66]. Several approaches such as roscovitine-like inhibitors [67] or 
Cdk5 silencing by Cdk5 RNAi induced neuroprotection; in the case 
of the latter, treatment resulted in reversal of learning defects and 
memory after one and four months post ischemic induction in rats 
[68,69]. The treatment prevented neuronal loss, inflammation, tau 
pathology as well as a behavioral deficit, including hippocampal long 
term potentiation. Upregulation of BDNF in the hippocampus may 
have been a contributing factor. 

The pattern of Cdk5/p25 activation after an ischemic episode 
resembles that of other neurodegenerative disorders and invites the 
application of the p5 peptide therapeutic strategy so successful in AD 
and PD [70]. Using a hypoxia/ischemic insult in neonatal rats on post-
natal day 7, brains from experimental (intraperitoneal injected p5-TAT 
(TP5) treated to facilitate crossing the blood-brain barrier) and sham 
controls (untreated) were compared as to levels of p25, p35 and Cdk5 
activity at different time points post ischemia. P35 decreased after the 
insult whereas p25 increased robustly as did Cdk5/p25 activity. The p5-
TAT treatment, however, had no effect on the levels of the regulators, 
but hyperactive Cdk5/p25 was diminished as seen in the reduction 
in levels of phospho-tau and phosphorylation of the glucocorticoid 
receptor [70]. After seven daily injections of p5-TAT post insult, 
behavioral studies also pointed to a successful improvement. Again, 
we see that in those neuronal disorders marked by a significant up-
tick of calpain activity, p25 upregulation and hyperactive Cdk5/p25 
phosphorylation of substrates such as tau, treatment with an inhibitory 
peptide derived from the p35 kinase regulator successfully attenuates 
pathology, neuronal death and compromised behavior. 

Regulation of Insulin Secretion in Pancreas; Cdk5 
Activity and Peptide Inhibition

Cdk5 kinase activity is not restricted to the nervous system; it 
plays a role in diverse cell types including muscle, pancreas and even 
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cancers, among others [71]. It is involved in transcription regulation, 
muscle differentiation, cell migration and adhesion and in insulin 
regulation of glucose uptake. Studies of its role in type 2 diabetes, have 
led to conflicting results. Although Cdk5 and its activators, p35 and 
p39 are expressed in pancreatic islets and beta cell lines, some reports 
claim its activation promotes insulin secretion [72,73], while others 
report that knockout of p35 and inhibition of Cdk5 activity promotes 
insulin secretion [74,75]. We have shown that duration of glucose 
toxicity is a key factor in regulation; short term (2 h) resulted in a 
modest increase in Cdk5 activity and insulin secretion whereas long 
term exposure results in significantly enhanced Cdk5 activity and a 
decline in insulin secretion [33]. Overexpression of p35 in Min6 cells 
plus high glucose toxicity is a stress signal that induces p25 expression 
and Cdk5 hyperactivation. The end result is a significant inhibition of 
insulin secretion. This pattern of Cdk5 deregulation resembles that seen 
in some neuronal disorders and suggests that inhibition of Cdk5 may 
promote insulin secretion under these conditions, which it does when 
using roscovitine or dnCdk5 transfection [33]. These non-specific 
results, however, fail to distinguish between inhibition of Cdk5/p35 or 
Cdk5/p25 activities (or both. Subsequently, we have shown that CIP, 
the large peptide that specifically inhibits Cdk5/p25 does rescue insulin 
secretion at high glucose [76,77], as does the smaller peptide TFP5 [78].

Results showing peptide inhibition of Cdk5 deregulation in non-
neuronal cells invites speculation that many diverse organs and tissues 
in which Cdk5 plays a key role, that the peptides may also affect those 
disorders marked by hyperactive Cdk5 induced by toxic overexpression 
of p25.

Conclusion
The protein kinase Cdk5 is ubiquitous, found in most mammalian 

cells and tissues, where, because of its wide range of targeted substrates, 
is involved in key signaling pathways and kinase cross-talk. It is tightly 
regulated physiologically by non-cyclin activators, p35, p67 and p39 and 
as a Cdk5/p35 complex, is essential in the development of the nervous 
system, synaptogenesis, synaptic function and neuronal survival. 

Under neuronal stress (aging, mutations, environmental insults) the 
kinase is deregulated; increased calcium flux evokes activation of the 
proteinase calpain, cleavage of p35 (and or p39) into a p10 myristoylated 
N-terminal fragment and p25, a hyperactive regulator which stably 
binds Cdk5, hyperactivates it and induces cellular pathology (protein 
aggregates) in several neuronal disorders. Similarly deregulated in 
other cells and tissues it provokes cell specific pathologies (e.g. insulin 
secretion). Accordingly, the Cdk5/p25 complex has been identified as 
a therapeutic target.

We have produced two small peptides, (CIP, 126 and P5, 24 aa) 
truncated fragments of p35, which specifically inhibit the Cdk5/p25 and 
Cdk5/p35 complexes in vitro but in cultured cells and in vivo in model 
mice, CIP and p5 specifically inhibits the abnormal Cdk5/p25 without 
affecting activities of Cdk5/p35 nor of related Cdks, the cell cycle 
kinases. Treatment with the peptides successfully reduces pathologies 
and behavioral defects in mouse models of AD, PD, ischemia and type 
2 diabetes. Following are some of the novelties of CIP and P5 peptides; 
The novelty of these peptide is absence of toxicity (>3000 mgm/kg in 
mice) and have higher affinity with Cdk5 compared to ATP. These 
peptides are very stable at room temperature.
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