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Editorial
There has been a trend of use of conventional or non-conventional 

therapies against cancer such as targeting “king pin” tumor cells itself, 
targeting tumor vasculature lined by endothelial cells, targeting tumor 
associated macrophages and recently, targeting inhibitory signals 
on T cells through immunotherapies in tumor microenvironment 
(TME). However, most of the cases have witnessed therapy resistance 
flowing a short-term or transient benefit. Despite of several failures 
in clinical trials targeting tumors and their microenvironments, our 
understanding is improving every day. It is evident that mutations in 
tumor cell compartment play a critical role in cancer development as 
well as therapy resistance. Here, we have discussed studies representing 
therapy resistance, through p53 as a model mutation and glioblastoma 
(GBM) as a model tumor.

Targeting tumor cells in glioblastoma

GBM, a grade IV glioma classified by World Health Organization, is 
considered highly malignant, vascular and invasive subtype [1]. Hypoxia 
and neovascularization are signature histopathologic features of GBM 
[2], which is most lethal during first year after initial diagnosis despite 
surgical resection and other standard therapies [1,3]. Temozolomide 
chemotherapy and radiotherapy against GBM tumor cells have led to a 
significant improvement in tumor growth and patient survival in newly 
diagnosed and recurrent GBM [4,5]. The survival advantage conferred 
by temozolomide chemotherapy is associated with methylation of 
the promoter region of the gene encoding O6-methylguanine DNA-
methyltransferase (MGMT) [6]. Both tumor protein p53 (TP53) and 
MGMT are involved in DNA repair after chemotherapy or radiotherapy, 
which may contribute to drug resistance. In addition, tumor cells 
acquiring several mutations during tumor progression could contribute 
to therapy resistance in GBM.

p53 mutations in GBM causing therapy resistance

Many different types of cancer including GBM show a high incidence 
of TP53 mutations, leading to the stabilization and overexpression of 
mutant p53 proteins [7,8]. Mutant p53 have both lost wild-type p53 
tumor suppressor activity and gained functions that help to contribute 
to tumor progression [9]. Mutations in p53 gene is reported in 30-
50% of GBMs [10] and strongly associated with a poor prognosis 
for overall survival in patients with GBM. In addition to role of p53 
mutations in promoting tumor growth, p53 mutation drive resistance to 
antiangiogenic therapy (AAT) targeting GBM vasculature [11]. Also, p53 
mutation may decrease the chemo-sensitivity of GBM to temozolomide 
by increasing MGMT expression [9]. Classical mechanisms of tumor 
cell–intrinsic resistance to targeted agents have been well-defined in 
literature, including aberrant drug metabolism and transport, drug 
target mutation, and activation survival pathways [7]. 

Targeting tumor microenvironment in GBM

Therapies targeted against TME represent a promising approach 
for anti-cancer therapy. Targeting TME may have decreased likelihood 
of acquired resistance through mutations in target TME cells, as is 

frequently observed with tumor cell–targeted therapies. TME-targeted 
agents such as targeting VEGF-VEGFR pathways in endothelial cells 
mediated vasculature and targeting CSF1R positive macrophages that 
constitute immune suppressive niche in TME, has been in routine use 
in preclinical studies and clinical trials. It still remains unclear whether 
resistance to TME-directed therapies follows similar principles as 
tumor cells. Therefore, it is becoming critical to mechanistically define 
how resistance may evolve in response to TME-targeted therapies in 
order to provide long-term disease management.

Targeting endothelial cell related angiogenesis in GBM

Since endothelial cell associated vasculature is important for 
providing nourishment to the growing tumor, AAT was applied in GBM 
targeting vascular endothelial growth factor (VEGF)–VEGF receptor 
axis with small molecular receptor tyrosine kinase inhibitors (RTKIs) 
and anti-VEGF antibody. AAT did not produce expected results in 
both clinical and preclinical studies [12-16] (Figure 1). Regrettably, 
benefits of AAT are at best transitory, and this period of clinical benefit 
(measured in weeks or months) is followed by restoration of tumor 
growth and progression [17,18]. Evidence of relapse to progressive 
tumor growth following treatment reflects development of resistance to 
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Figure 1: p53 mutation causing therapy resistance in targeting tumor 
microenvironment.
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AATs [19]. Preclinical studies indicated the development of resistance 
to the AATs in animal models of GBM [15,16,20]. One possible 
mechanism for resistance to AAT might be the activation of alternative 
angiogenesis signaling pathways [21-24]. Hypoxia with increased 
production of bFGF, angiopoietin1/2, granulocyte colony stimulating 
factor (G-CSF), monocyte chemotactic protein-1 (MCP-1) and SDF-1α 
were seen following AAT [16]. A second potential mechanism of AAT 
resistance might be due to recruitment of BMDCs in the TME. Hypoxia 
creates conditions permissive for the recruitment of a heterogeneous 
population of macrophages that promote immune suppression, 
neovascularization, and tumor growth [16,20,25]. Subsequent analysis 
showed critical myeloid and endothelial cell signatures in the tumors 
following AAT [20]. Therefore, targeting of BMDCs acquiring pro-
tumor myeloid phenotypes may block the activation of alternative 
mechanisms drive AAT resistance in GBM. 

Targeting tumor associated macrophages in GBM

Macrophages and microglia are of the most abundant noncancerous 
cell types in GBM, in some cases accounting for up to 30% of the total 
tumor composition [26,27]. Recent studies have shown that myeloid 
populations of BMDCs are critical in tumor development [20,28]. 
Myeloid derived suppressor cells (MDSCs) are immunosuppressive 
cells that are abundant in TME and inhibit T-cell-mediated anti-tumor 
immunity [29-31]. Macrophages in the TME are skewed towards a M2 
polarized state. This M2 polarized state is closely related to the tumor 
associated macrophage (TAMs) profile. Several chemokines, such as 
macrophage colony-stimulating factor-1 (MCSF/CSF1) and monocyte 
chemotactic protein-1 (MCP1/CCL2) are known to contribute in 
the recruitment of TAMs and myeloid cells to tumors due to the 
presence of CSF1R [30,32,33]. CSF1R expression has been reported 
on immunosuppressive myeloid cells, TAMs and dendritic cells (DCs) 
[34-36]. CSF1-CSF1R signaling regulates survival, differentiation, 
and proliferation of monocytes and macrophages [37,38] and has a 
critical role in angiogenesis and tumor progression [39,40]. Recently, 
GW2580 was identified as an inhibitor of the CSF1R pathway by 
acting as a competitive inhibitor of ATP binding to the CSF1R kinase 
[41,42]. CSF1R blockade through other class of inhibitor has been 
shown to reverse macrophage polarization, inhibited GBM progression 
[43] and improved efficacy of radiotherapy [35]. Recently we found 
that GW2580 was able to reduce glioma growth by limiting CXCL7 
production in tumor-recruited bone marrow-derived myeloid cells [20] 
in a novel chimeric mouse model [25]. However, combining AAT with 
anti-CSF1R did not improve the results [20,25].

Resistance to anti-CSF1R therapy targeting TAMs in GBM

Studies indicated that TME accumulated TAMs can be targeted 
through anti-CSF1R with short-term treatment protocol to inhibit 
GBM progression in animal models [20,25,43,44]. However, studies are 
rare to investigate how resistance emerges in response to continuous 
long-term CSF-1R blockade in GBM. Recent study published in journal 
“Science”, identified that although overall survival is significantly 
prolonged in response to long-term CSF-1R inhibition, subset of tumors 
recur eventually in >50% of mice [45]. Transplantation of recurrent 
tumor cells into naïve animals, GBM reestablish sensitivity to CSF-1R 
inhibition, indicating that resistance is microenvironment driven [45]. 
Consequently, combining IGF-1R or PI3K blockade with continuous 
CSF-1R inhibition in recurrent tumors significantly prolonged overall 
survival [45]. However, study did not answer whether resistance to anti-
CSF1R targeting TAMs in TME is depended on mutational status of the 
tumor cells. 

These findings support the view that although cells in 
microenvironment are less susceptible to genetic mutation than cancer 
cells, a tumor can however acquire a resistant phenotype by exploiting 
its microenvironment. Idea that understanding the functions of 
tumor cell associated p53 status in terms of tumor growth differences, 
recruited or residual TAMs, their polarization and functions in TME is 
important. Therefore, development of new therapeutic approaches that 
may be advantageous for several cancers are required to explore [7]. 
Importantly, targeting gain-of -function p53 mutation in combination 
with anti-TME could be the key for future preclinical and clinical trials 
[7].
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