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Introduction 
From previous proximate composition analysis studies of Dagaa, 

we have established that it is a nutritionally dense fish [1]. In addition, 
it has the second highest landings (of up to 63%) in Lake Victoria. 
However, poor storage and handling conditions have led to postharvest 
losses of 30% which increase to 50% during the rainy season. Alternative 
methods of using this under-utilized Dagaa fish species are therefore 
needed to increase its potential utilization and market value [2]. 

Use of enzymes to recover fish protein hydrolysates (FPH) is a 
technology that is gaining popularity due to the bioactive properties 
associated with these compounds. Enzymatic hydrolysis of native 
fish proteins has been shown to improve their functional properties, 
including solubility, emulsifying capacity and foaming characteristics 
hence offering interesting opportunities for food applications and 
pharmaceuticals [2]. 

In any given enzymatic process, the final product yield depends 
on several factors. These include; the type of enzyme and substrate, 
hydrolysis conditions; pH, temperature, time and enzyme/substrate 
ratio, solvent ratio and stirring speeds [3-6].

In addition to effect on yield, enzyme type also affects the 
bioactivity of the obtained hydrolysate. Therefore, appropriate selection 
of suitable enzyme and substrate as well as hydrolysis conditions such 
as; enzyme to substrate ratio, hydrolysis time, pH and temperature are 
crucial in obtaining protein hydrolysates with desirable functional and 
biological properties [5]. Moreover, from an economical point of view, 
the amount of enzyme used should be optimized to prevent enzyme 
waste and manage its costs [6].

Enzymatic hydrolysis can be done using proteolytic enzymes 
already present in the fish viscera and muscle (endogenous proteases); 
a process known as autolysis, or by exogenous enzymes. Autolysis by 
endogenous enzymes is difficult to control. This is attributed to several 
factors including the fish species, seasonality, as well as the type and 
amount of enzymes [7]. In addition, gender and age dependent changes 
may lead to variability in endogenous enzymes present in fish and other 
marine sources making it difficult to produce protein hydrolysates of 

same quality and properties [8,9]. The method also adversely affects the 
functional and organoleptic properties of the fish protein hydrolysates 
(FPH) and may produce toxic by-products. 

These numerous shortcomings of autolysis have been overcome by 
exogenous enzymes. The addition of exogenous enzymes to hydrolyse 
food proteins is a process of considerable importance used to improve 
the physicochemical, organoleptic and functional properties of the 
initial protein substrates. There are a number of different proteolytic 
enzymes that can be used for the production of hydrolysates [10-
12]. However, the preferred enzymes are large spectra proteases such 
as Alcalase [13], Neutrase [14], Protamex [14] and Kojizyme [15]. 
Similarly, lot of fish by-products have been hydrolyzed such as salmon 
head [16], salmon frame [17], sole frame [18], sardine viscera and 
head [19], cod [20,21], pacific hake [5] and shark [23] using exogenous 
enzymes.
However, until recently production of protein hydrolysates from Dagaa 
was not reported. From our previous research, we have been able to 
produce Dagaa protein hydrolysates with remarkable antioxidative 
properties as well as demonstrated their functionality and potential 
inclusion in food systems [2].  
This present communication, aims at reporting the process of 
optimizing hydrolysis conditions of Dagaa (Rastrineobola argentea) 
protein hydrolysate by using Alcalase 2.4LΣ. The optimized hydrolysis 
conditions, as well as effects of each factor have been reported. 

*Corresponding author: Ogonda Lydia Awuor, Department of Biochemistry,
School of Medicine, College of Health Sciences, P.O BOX30197, Nairobi,
Kenya, E-mail: Lydia.Ogonda@gmail.com

Received January 17, 2017; Accepted February 13, 2017; Published February
17, 2017

Citation: Ogonda LA, Muge EK, Mbatia B, Mulaa FJ (2017) Optimization of
Alcalase Hydrolysis Conditions for Production of Dagaa (Rastrineobola argentea) 
Hydrolysate with Antioxidative Properties. Ind Chem 3: 122. doi:10.4172/2469-
9764.1000122 

Copyright: © 2017 Ogonda LA, et al. This is an open-access article distributed 
under the terms of the Creative Commons Attribution License, which permits 
unrestricted use, distribution, and reproduction in any medium, provided the 
original author and source are credited.

Abstract
Enzymatic conditions; stirring speed, pH, temperature, enzyme substrate (ES) ratio, solvent ratio, reaction time; 

for Dagaa (Rastrineobola argentea) hydrolysis by Alcalase 2.4L® were optimized. This was done to guarantee 
maximum enzyme activity, minimized losses and subsequent maximized product yield. 

This study showed optimized hydrolysis conditions to be fixed at minimum stirring speed (overhead stirrer, 
Stuart, UK), pH 7, 56°C, ES ratio of 2% (v/w) and solvent ratio of 0.5% (v/w) for 6 h. At these combined optimal 
conditions, Alcalase 2.4L®Dagaa (Rastrineobola argentea) hydrolysis resulted in 71% protein recovery with 83% 
degree of hydrolysis.

These findings substantiated the use of Dagaa which proved to be a relatively good substrate for protein 
hydrolysate production.
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Materials and Methods
Materials 

The enzyme used was food-grade quality Alcalase® 2.4 L was 
selected because it is a wide spectrum protease.  Fresh Dagaa (1 kg 
each) was obtained from various landing sites: Dunga, Nduru, Paga, 
Rota and Usari from four fishermen around the shores of Lake Victoria 
resulting in a total sample weight of 20 kgs. This was well mixed for a 
representative sample, apportioned and stored at -20°C until further 
use. 

Enzymatic hydrolysis of Dagaa protein 

A 1 Kg portion of Dagaa representative sample was thawed at 4°C 
overnight and homogenized using a Multi grind (Sumeet research 
and Holdings PVT limited, Tamil Nadu, India ) for about 2 min. The 
homogenate was put in a reactor and mixed with a buffer (pH 7) at a ratio 
of 2:1 (w/v). The contents were allowed to attain a temperature of 56°C, 
with stirring at minimum rpm (Stuart stirrer, UK). A predetermined 
optimized ES (enzyme substrate) ratio 2% (v/w) of Alcalase was added 
and hydrolysis allowed to proceed for 6 h. The enzyme activity was 
then terminated by placing the hydrolysate in a water bath at 100°C for 
20 min. The hydrolyzed Dagaa was centrifuged at 10000 × g for 20 
min. After decantation and removal of sludge, the soluble fraction 
was freeze-dried and stored in airtight plastic container at -20°C for 
further use.

The effect of stirring, solvent ratios, ES ratio, pH, temperature, 
and time was carried out for 120 min, which was also based on 
the preliminary optimization study. The progress of the enzymatic 
hydrolysis was monitored based on the percent nitrogen recovery 
(% NR).

Optimising hydrolysis conditions stirring speeds

Stirring was done with an overhead stirrer (Stuart, UK). Enzymatic 
hydrolysis was carried out at speeds 0-2000 rpm for 2 h. 

Solvent ratio 

Solvent ratios % (v/w) were optimised between 0-3% for 2 h. The 
optimum solvent ratio was then set at the solvent ratio at which the 
highest % Nitrogen Recovery (% NR) was obtained. All assays were 
done in triplicate.

Hydrolysis pH 

The pH range of interest was alkaline since Alcalase is an alkali 
enzyme. The effect of pH was investigated according to Normah et al. 
[4]. Dagaa was added to buffer ranges (pH 7-11) and the temperature 
allowed to equilibrate to 50°C. The pH of the mixture was held constant 
by the addition of 4N NaOH or 4N HCl. The hydrolytic process was 
then terminated by heating the mixture at 100°C in a water bath for 
20 min to inactivate the enzyme. The mixture was then cooled to 
room temperature followed by centrifugation at 10000 g for 20 min 
at 4°C using a refrigerated centrifuge to obtain the supernatant. The 
supernatant was then analyzed for % nitrogen recovery. The optimum 
pH was the pH with the highest % nitrogen recovery. All assays were 
done in triplicate.

Hydrolysis temperature 

Temperature optimization was carried out in temperature range of 
50°C–58°C for 2 h. The optimum temperature was the temperature at 
which the highest % nitrogen recovery (% NR) was obtained. All assays 

were done in triplicate.

Enzyme substrate (ES) ratio 

The use of ES ratios between 1 and 2 % (v/w) has been proposed 
for industrial purposes in order to achieve nitrogen recovery as high as 
60-70 % [24]. Enzyme substrate (ES) ratios within the range of 0–3 % 
(v/w) were tested for 2 h. The ES ratio that gave the highest %NR was 
considered optimum [4]. All assays were done in triplicate.

Hydrolysis time 

The hydrolysis was run for 480 min at the optimum conditions: 
minimum stirring speed, pH 7 and solvent ratio 0.5 % (v/w), ES ratio 
2 % (v/w) and temperature 0f 56°C obtained. Aliquots of hydrolysis 
mixture were then collected every 30 min and placed into a water bath 
at 100°C for 20 min for enzyme inactivation. The hydrolysis mixture 
was then cooled to room temperature and centrifuged at 10000 × g 
for 20 min at 4°C to obtain the supernatant. The pH of solution was 
checked every 30 min. An alkali/acidic solution (4N NaOH)/ 4N HCl 
was added to maintain a constant pH throughout the hydrolysis period. 
The hydrolysis time with the highest % NR was considered optimal. All 
assays were done in triplicate.

Determination of % nitrogen recovery

Total nitrogen in the supernatant was determined using the Biuret 
method. Nitrogen recovery was calculated as the percent of total 
nitrogen in the supernatant relative to total nitrogen present in the 
substrate [25]. All assays were done in triplicate.

Determination of % degree of hydrolysis (DH)

Degree of hydrolysis (DH) was calculated according to percent 
of trichloro acetic acid (TCA) ratio method as described by [13]. 
After hydrolysis, 20 ml of protein hydrolysate was added to 20 ml of 
20% (w/v) TCA to produce 10% TCA soluble material. The mixtures 
were then left to stand for 30 min to allow precipitation, followed by 
centrifugation (7800 g for 15 min). The supernatant was then analyzed 
for protein content using Kjeldahl method [26]. All assays were done 
in triplicate.

The degree of hydrolysis (DH) was then computed as shown in the 
formula below:

DH (%) =  × 100    

Statistical analysis 

Statistical analyses were performed using the statistical program 
[36].

Data was presented as mean ± standard deviation.

Results and Discussion 

Choice of Enzyme
Alcalase® 2.4 L (Sigma Aldrich); a subtilisin protease enzyme was 

picked as the enzyme of choice. This is because it has a broad substrate 
specificity and hydrolyzes both native and denatured proteins, 
broad working pH and temperature range and is stable against auto-
proteolysis; a problem that is common for other proteases [37]. 
Moreover, it allows the termination of hydrolysis by heat treatment 
which allows for good microbial quality and enhanced hydrolysate 
flavor. This choice was confirmed by the %NR (71%) which is higher 
than those previously reported [25]. In addition, the antioxidative 
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properties of the Alcalase hydrolysate were more potent than that of 
hydrolysates produced by the endogenous Dagaa enzymes [2].

Stirring

For this study, optimised stirring for Dagaa (Rastrineobola argentea) 
was fixed at minimum stirring speed for an overhead stirrer (Stuart, 
UK). This was the point at which the substrate was seen to move as 
one (without a broken meniscus) reflecting optimum mixing. On the 
other hand, higher speeds (500-2000 rpm) caused spattering indicative 
of poor mixing. 

Optimization for solvent ratio

Solvent plays an important role in enzyme processes. This is 
important for the type of solvent as well as the amount of solvent. 
This is because the solvent components have an effect on hydrolysate 
components and the stability of the enzyme used.

In this study, there was a negative correlation between solvent ratios 
and percent nitrogen recovery. Hence an increase in percent solvent 
ratio (%v/w) led to decrease in percent nitrogen recovery (Figure 1). 
The maximum percent nitrogen recovery was obtained at solvent ratio 
0.5% (v/w). This was considered to be the optimum solvent ratio. 

This could be explained by the dilution. High solvent ratio dilutes the 
product, whereas low solvent ratios result in concentration of the substrate 
thus low activity demonstrated by minimised low percent nitrogen recovery. 
A decrease or increase in solvent ratio above the optimum reduces the 
yield (%NR). Similar results have been obtained for lipase where increasing 
solvent ratio resulted in decreased product yields [27]. 

Optimization for pH

Previous studies on other substrates have shown Alcalase to have 
activity within the alkaline pH range. The pH profile for the hydrolysis of 
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Figure 1: The effect of % solvent ratios (v/w) on Alcalase hydrolysis (pH 7, 50°C, 0.5% Alcalase v/w) of 100 g Dagaa. 

0

20

40

60

80

100

120

%
N

itr
og

en
 R

ec
ov

er
y 

pH
7          8               8.5          9.0         9.5          10         10.5

Figure 2: The effect of pH on Alcalase hydrolysis (50°C, 0.5% Alcalase v/w, 0.5% solvent ratio v/w) of 100 g Dagaa.
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Figure 3: The effect of temperature on Alcalase hydrolysis (pH 7, 0.5% Alcalase v/w, 0.5% solvent ratio v/w) of 100g Dagaa.  
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Optimization for enzyme/substrate ratio

Apart from pH and temperature, enzyme substrate ratio is one of 
the factor, which shows a marked influence on peptide bond cleavage of 
the protein substrate [32]. The profile of % NR during the 2 h hydrolysis 
of Dagaa is shown in Figures 4. Maximum %NR was obtained at ES 
ratio of 2% (v/w). 

Approximately 20% of the total nitrogen remained insoluble at the 
end of a hydrolysis process even if more enzymes were added during 
the stationary phase of hydrolysis [35]. This insoluble residue contains 
peptides enriched with hydrophobic amino acids that are highly 
resistant to further degradation by the enzyme [33]. Furthermore, 
the increase in peptide concentration in the hydrolysis mixture and 
the total cleavage of all the susceptible peptide bonds inhibits further 
increase of hydrolysis rate and soluble nitrogen production [6].

Nitrogen recovery (71%) obtained in this study was higher than 
those obtained in the hydrolysis of sardine (Sardine pilchardus) and 
black tilapia (Oreochromis mossambicus) using Alcalase at a 2% ES ratio 
in which only 65 and 40% soluble nitrogen, respectively, were recovered 
[25]. The use of ES ratios between 1 and 2% has been proposed for 
industrial purposes in order to achieve nitrogen recovery as high as 
60–70% [24] (Figure 5). 

In this study, an ES ratio of 2% (v/w) produced hydrolysate 
containing 71% nitrogen, higher than some of the earlier reports. 
Hence, Dagaa is a comparatively a good substrate for fish protein 
hydrolysate production.

Effect of hydrolysis time and ES ratio on % DH 

Efficiency of hydrolysis was determined by % DH. In addition to 
hydrolysis time, ES ratio has also been shown to affect the % DH [6,24]. 

There was a significant (p<0.05) increase in % DH with increase 

Dagaa by Alcalase is shown in Figure 2. There was a significant (p<0.05) 
difference in % NR obtained at the different pH values. However, There 
was no significant (p>0.05), increase in % NR with increase in pH. 

The maximum % NR was obtained at pH 10.0. This is similar to 
previous studies on Pacific whiting (Merluccius productus) solid waste 
that showed maximum % NR at pH 9.5 [25]. However, at this pH 10.0, 
the hydrolysis solution showed a colour change from brown to black 
with the smell of urine. Urea is the main nitrogen containing substance 
in urine. This was indicative of very extensive protein degradation to a 
level of amino acid breakdown. Previous studies have however shown 
that amino acids do not exhibit very good antioxidative properties 
thus for this study that involved antioxidative function analysis, it was 
a requirement to stop the proteolysis at least at a dipeptide [28-31]. 
Consequently, the pH with the next highest % NR was selected. The 
hydrolysis was fixed to pH 7. 

Optimization for temperature

There was a significant (p<0.01) increase in % NR with increase in 
temperature (Figure 3). Alcalase enzyme showed an optimum activity 
at 56°C. This was similar to studies on Alcalase hydrolysate of harp seal 
(Phoca groenlandica) that showed maximum yield at 55°C [6]. Alcalase 
reported a maximum yield at 60°C in Pacific whiting solid wastes and 
Threadfin Bream (Nemipterus japonicus) respectively [4,25]. 

A gradual increase in temperature led to the breakdown of 
substrate from an insoluble into a soluble form increasing the % NR 
[32]. However, a further increase in temperature to 58°C led to a 
decrease in % NR by 13%. This confirmed findings that a decrease of 
about 5–6% NR followed thereafter when the temperature was raised 
above the optimum for Alcalase. This could be attributed to enzyme 
destabilization resulting in reduction in total activity [4].
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Figure 4: The effect of enzyme concentration on Alcalase hydrolysis (pH 7, 56°C, 0.5% solvent ratio v/w) of 100 g Dagaa. 

0

20

40

60

80

100

120

%
N

itr
og

en
  r

ec
ov

er
y

TIME (hours ) 
0        1      2      3        4         5     6       7      8

Figure 5: The effect of time on Alcalase hydrolysis (pH 7, 56°C, 2% Alcalase v/w, 0.5% solvent ratio v/w) of 100 g Dagaa.  



Citation: Ogonda LA, Muge EK, Mbatia B, Mulaa FJ (2017) Optimization of Alcalase Hydrolysis Conditions for Production of Dagaa (Rastrineobola 
argentea) Hydrolysate with Antioxidative Properties. Ind Chem 3: 122. doi:10.4172/2469-9764.1000122 

Page 5 of 6

Volume 3 • Issue 1 • 1000122
Ind Chem, an open access journal
ISSN:2469-9764

production of protein hydrolysate with antioxidative function, it was a 
requirement to stop the proteolysis at least at the dipeptide stage.

Consequently, in this study, optimized hydrolysis conditions were 
fixed at minimum stirring speed (overhead Stuart stirrer, UK), 56°C, 
pH 7, ES ratio of 2% (v/w) and solvent ratio of 0.5 (v/w) for 6 hours. 
Following continuous hydrolysis at these optimum conditions, an 83% 
degree of hydrolysis was achieved with a 71% protein yield.  
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