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Editorial
As the global demand for energy, chemicals, and materials

continues to increase, so will the need for more sustainable alternatives
technologies. Woody biomass, composed of renewable lignocellulose
polymers, will be paramount towards developing greener alternative
processes and products that will address a growing demand for
renewable resources. Lignin [1] (see Figure 1) is a major component of
lignocellulose biomass and the second most abundant terrestrial
organic polymer on Earth after cellulose, which is as ubiquitous as it is
underutilized.

Figure 1: An exemplary segment of softwood lignin.

However, this reality is rapidly changing. The production of
consistent, relatively pure, streams of industrially isolated lignin
coupled with improved spectroscopic understanding of its chemical
nature, and novel green application strategies are fundamentally
changing the future of lignin for materials, chemicals, and energy.

Lignin as a Resource
Lignin is industrially extracted from wood on the order of 50

millions of tons per year from the global chemical pulping industry
and the growing volumes of lignin from cellulosic ethanol plants. The
most common delignification process is the sulfate (kraft) pulping
process [2]. During kraft pulping, wood is impregnated with cooking
liquor containing sodium sulfide and hydroxide in order to cleave
lignin-based aryl-ether linkages, which result in the solubilization and
separation of lignin fragments from cellulosic fibers. In this solubilized
form, nearly 98% of kraft lignin is burned as a less-than-optimal
energy resource within pulp mill recovery boilers in order to recover
pulping chemical and energy. Notably, the capital costs associated with
a recovery furnace and the desire by the pulping industry to obtain
higher material yields have spurred increasing research towards
repurposing kraft lignin as a value-added byproduct and bioresource
for sustainable innovative valorisation research and higher-utility
commercial applications [3].

The Challenge
Lignin is a recalcitrant biopolymer composed of varying

proportions of cross-linked phenylpropane units based on: p-coumaryl
alcohol, coniferyl alcohol, and sinapyl alcohol (Figure 2) [4,5].

Opportunely, our understanding of lignin structure and chemical
nature has advanced alongside efforts to process the compound it into
higher-utility compounds. Spectroscopic methods employing nuclear
magnetic resonance (NMR) have and continue to be one of the most
powerful tools in lignin structure elucidation providing quantitative
insight into its structure [6,7]. Today, advancements in lignin
characterization with NMR are represented via comprehensive
approaches that include quantitative 1H- and 13C-NMR 1D/2D
experiments, along with more recent additions such as 2D Whole Cell
NMR and phosphitylation followed by 31P-NMR [8,9]. Ultimately,
these spectroscopic studies along with FT-IR, wet-chemistry methods
serve to inform our understanding of many types, changes to, and
effects of lignin in a variety of novel and useful applications [10].
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Figure 2: The monolignol units of lignin.

Applications of Lignin for Biochemical and
Biomaterials and Bioenergy

Lignin from chemical pulping operations, as well as increasing
quantities of lignin from commercial cellulosic ethanol plants are
considered to be promising resources for the production of renewable
aromatic chemicals and biofuels via lignin pyrolysis. With the use of
catalysis, pyrolysis experiments can be designed to thermally
decompose lignin into phenolics and other substituted aromatics [11].
Although the phenolic compounds have valuable commercial markets,
the diverse mixture of compounds makes purification difficult and
either new pyrolysis process chemistry needs to be developed to
narrow the product stream and/or improved deoxygenation and
upgrading chemistry must be developed to yield a fungible fuel
product. Additionally, pyrolysis of lignin also yields valuable gases as a
byproduct that can be captured and used as an energy resource or
chemically upgraded to higher molecular weight compounds. The
process also generates a bio-char fraction that has applications in air,
soil and wastewater treatment [12,13].

Beyond degradative-strategies, lignin also has a number of
applications as a "drop-in" material for industrial composites and
admixtures [14]. This is particularly valuable as the loading of lignin in
strictly synthetic polymers can yield composites with equivalent or
improved physical properties with the additional benefit of improving
environmental and cost performance issues. Lignin as an admixture
also better leverages supplies of limited fossil fuels as a feedstock used
to produce synthetic polymeric building blocks [15]. As such, lignin
has been implemented as a component in polyethylene, rubber, and
thermoplastic composites among many other types [15-18].
Interestingly, lignin also imparts natural antioxidant, rheological or
antidegradation properties beneficial for drop-in additives in current
products such as an dispersants, cements, paint additives, inks, and
dyes [3,19,20].

Future lignin opportunities include the generation of adhesives,
resins, and carbon fibers [21,22]. Carbon fibers are essentially graphite
fibers that are virtually 500% stronger than steel, yet at only 20-30% of
the weight consequence. Moreover, carbon fibers also have a thermal
expansion that is lower than most commonly used alloys implemented
today and can be spun into a strand thinner a hair of a human being-
but with the tensile strength greater than titanium or shaped into rigid
molds are be suitable for many applications in the automotive, aviation
and power generation industries. For example, carbon fibers as a
replacement for aluminium parts in the manufacturing of cars would
reduce the weight of the vehicle without sacrificing strength, thereby
improving fuel efficiencies without sacrificing the performance
properties of today’s motors or electric/hybrid engine systems that are
in use today. Despite these promising mechanical properties,

mainstream penetration of carbon fibers is inhibited due to the cost of
conventional precursory materials such as petroleum-derived
polyacrylonitrile; while lignin has considerable potential as a
renewable building block that can reduce the cost of carbon fiber
manufacturing, the promise of high-performance lignin-derived
carbon fibers remains a research challenge. This specific consequence is
due to limited strength profile properties of lignin based carbon-fibers
and yet our advancing understanding of the chemical nature of lignin,
properties associated with lignin-based carbon fibers, and novel
carbonization strategies suggest that these issues will be overcome
[3,5,23,24].

Lastly, lignin has been investigated as a feedstock for bioenergy
development. This is particularly imperative as the needs for
sustainable energy platforms will only increase over the next decades
as industrialized and developing nations countries continue to advance
and will need increased energy and fuels [25]. While pyrolysis coupled
with hydrogenation studies have been demonstrated to yield gasoline-
like molecules from lignin, low-energy biological exploits have been
reported that make use of oil-producing (oleaginous) microbes with an
affinity to degrade plant materials, including lignin [26,27]. The oils,
produced by these microbes are intracellularly stored as
triacylglycerides, which can be readily transesterified into long-chain
fatty acid methyl esters (FAMEs) that have applications as a fungible
biodiesel [28]. Recently, a promising organism for biodiesel production
is oleaginous Rhodococci which can utilize the aqueous waste streams
of a biorefinery waste . These effluents generally contain degraded
lignin and carbohydrates, which are simultaneously processed by
oleaginous microbes to produce triacylglycerols that can be esterified
into FAMEs [29]. Interestingly, the conversion of lignin-contaminated
effluents into biodiesel can provide a strategic avenue to better
optimize biofuel production and waste stream treatment for a number
of industries [30,31]. Moreover, engineered strains of Rhodococci can
potentially accumulate high-value metabolic intermediates as opposed
to specialty oils for an even broader impact in biotechnological
markets [32].

Overall, the future of lignin for advanced materials, chemicals,
energy has reached a near unprecedented potential. The avenues for
lignin valorization are plentiful, substantial, and feasible. Hence, while
our understanding of the biopolymer continues to improve, so will the
marketable applications.
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