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Summary
The creation of the term angiogenesis goes back to 1787 [1] and the

role of vessels in cancer has being studied since. In 1971 Folkman [2]
introduced the hypothesis, until now widely accepted, that tumour
growth is angiogenesis dependent [3]. However, the discovery that
cancer can also grow without angiogenesis, by co-opting pre-existing
vessels both in humans [4-7] and in mice [8] has demonstrated that
this is not always the case. The observation that cancer cells can exploit
pre-existing vessels provides a new aspect of the interaction between
host and tumors, sheds new light on the biology of the latter and has
implications for resistance to antiangiogenic drugs and development
of new vascular targeting strategies.

Introduction
The availability of oxygen and nutrients supplied by the vasculature

is critical for cancer growth and the role played by the blood vessels
has been a long standing object of many studies. The introduction of
the concept of angiogenesis goes back as far as 1787 [1] and in 1939
Ide et al described that tumour implants in the ears of rabbits were
accompanied by formation of new capillaries [9] leading to the idea
that angiogenesis is necessary to support tumours. At the same time
instead several histopathologists maintained the point that both pre-
existing and newly formed vessels were co-existing in tumours and,
sometime, only pre-existing vessels could be observed [10]. However it
was not until thirty years later that the subject started to be
systematically studied by Judah Folkman [11] following the path
indicated by Ide.

The case for angiogenesis dependence
In 1971 Folkman published a seminal paper [12] in which the idea

that “the growth of solid neoplasm is always accompanied by
neovascularization” was put forward. This hypothesis was mostly
based on “in vitro” and animal models [13] with experiments
conducted in avascular sites, such as the cornea of a rabbits [14],
regarded as classic proof of concept. Subsequent work on mice has not
only confirmed the need for angiogenesis but also shown that its
induction is an early event [15].

Immunohistochemical studies of human in situ breast [16] and
cervical [17] carcinomas have demonstrated the enhanced presence of
micro vessels in the underlying basal membranesat this early stage
inferring that angiogenesis may represent an essential intermediate
phase between in situ and infiltrating carcinomas [15]. A formal
classification of intratumour vessels in human tumours maintained

that they were all newly formed [18]. The direct correlation between
microvessell density and outcome [19] further strengthened the idea of
a link between angiogenesis and tumour growth although such an
association has been subsequently strongly questioned [20].

Recently it has been concluded that induction of angiogenesis is an
hallmark of cancer as it is necessary to addresses the needs of tumour
cells for oxygens and nutrients and clearence of catabolic products
[21].

Non-angiogenic tumours
An increasing body of evidences has uncovered an added layer of

complexity: the possibility that some malignant tumours grow in the
absence of neo-angiogenesis by co-opting the pre-existing vasculature.

This observation was first made in clinically detected non-small cell
lung carcinomas where four distinct patterns of growth and
vascularization were described [22-24]. Three of these patterns have in
common the destruction of normal lung architecture, the recruitment
of tumour-associated stroma and new vessel formation as they grow in
an organ-like fashion [21]. In the fourth non-angiogenic pattern, the
immunostainings for endothelial markers highlight the alveolar
vessels, entrapped by the neoplastic cells filling the alveolar spaces and
growing by co-opting the existing vessels. Soot in macrophages is
commonly seen alongside these vessels indicating that they are they
pre date the appearance of the tumour. Tumours with both angiogenic
and non-angiogenic areas are also commonly seen [5]. Clinico-
pathological correlation showed that stage 1 pT1N0 non-angiogenic
tumours actually had a worst overall and disease free survival,
compared with the angiogenic, with microvessel density having no
prognostic value [25,26]. Furthermore also lung metastases were found
to growth in a non-angiogenic fashion [4,27] even when the primary
tumour was angiogenic [2000] raising doubts about the idea that
angiogenesis is always linked to progression of disease and showing
that the angiogenic switch can be reversed during disease progression.
This type of non-angiogenic growth in the lung had been previously
described as “intra alveolar” [10] and the first description is accredited
to a paper from 1861 [28] although, not surprisingly, the relevance to
the problem of angiogenesis was not discussed.

If some neoplastic cells are able to grow in a non-angiogenic way by
co-opting pre-existing vessels, this type of tumour growth may be
expected to be seen in some other organs, and indeed this is the case in
the liver. Vermeulen and colleagues [7,29] described three different
patterns of hepatic metastatic growth of colorectal and breast
adenocarcinomas. In two types, the desmoplastic and the pushing, the
architecture of the liver parenchyma was not preserved and an
angiogenic tumour is present. However, in the replacement growth
pattern, the metastatic cells infiltrate the liver parenchyma without any
disturbance of the pre-existing liver structure. As in the lung, liver
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metastases can have a pure or mixed pattern of growth with some
patients who have multiple metastases displaying both “pure”
angiogenic and non-angiogenic tumours [30]. The patients with non-
angiogenic metastases appeared to have a slower but still aggressive
disease as they had a better prognosis at 24 but not at 60 months [31].
The incidence of these liver patterns of metastases depends on the
tissue of origin: breast, pancreatic and urothelial secondaries have a
prevalent non-angiogenic growth pattern [32] while only one third of
the colorectal metastases grows in this fashion. A second non-
angiogenic growth pattern, in which the neoplastic cells colonised the
sinusoid rather than replace the hepatocytes, has also been described
[33].

The possibility that some brain tumours, namely glioblastoma
multiforme, could be not entirely angiogenesis dependent was first
raised in 1994 [34]. Since then the occurrence of vascular co-option in
brain has been confirmed for glioblastoma [35] and reported also for
gliomas [36,37]. Vascular co-opttion is now regarded as one of the
reasons for the development of resistance to anti angiogenic agents in
primary CNS tumours [38]. Cerebral metastases can also grow by
vascular co-option [39]. Two recent studies on brain malignancies
started to unravel the molecular pathways leading to vascular co-
option. Serpins expression in the metastatic cells have been described
as essential for this to happen by Valiente [40] while Caspani et al.
highlighted the role of flectopodia which are Cdc42-dependent and
actin-based cytoplasmic extensions in glioblastoma multiforme [41].

Vascular co-option in mouse models
Following the description in human tumours, non-angiogenic

growth by vascular co-option has been described also in animal
models. The first report was from rats [8] demonstrating that glioma
and mammary adenocarcinomas implanted in their brain can grow by
exploiting the pre-existing vessels. This observation suggested that in
the brain as well a significant non-angiogenic neoplastic growth does
occur. The authors also examined a model in which the mouse lung is
colonised by Lewis lung carcinoma cells that as seen in human lung
are able to co-opt the pre-existing vessels. These finding have been
supported by further animal models in which both gliomas [36] and
metastatic melanoma [28] were growing in the brain by vascular co-
option. Recently Szabo and co-workers [42] described the different
anatomical phases in which cancer cells co-opt the lung alveolar
vessels.

Non-angiogenic growth: why does it happen?
Different non-angiogenic patterns, intra alveolar in the lung,

hepatocyte replacement in liver and parenchima infiltration in brain,
suggest that different mechanisms are at the basis of these ways of
growing. We are far from understanding why some tumours do not
trigger angiogenesis as not many studies have been carried out so far.

Only minor differences were found as far as necrosis is concerned,
with the non-angiogenic tumours being more prone to necrosis, while
chronic inflammation and fibrosis were characteristics of angiogenic
tumours. No differences in microvessel density and apoptosis were
observed [12]. An immunohistochemical study failed to demonstrate
any major difference in the expression of markers of angiogenesis and
hypoxia, the only exception being stromal thrombospondin that was
almost absent in non-angiogenic but widely present in angiogenic
tumours [12,13] possibly because of its anti-angiogenic activity plays a
role in the vascular re modelling occurring in angiogenic cancers [43].

mRNA expression profiling by microarray studies confirmed that
no differences in classic hypoxia or angiogenesis pathways could be
found with the exception, again, of Thrombospondin1. An unexpected
finding was instead the increased expression in non-angiogenic
tumours of a set of genes linked to Oxidative Phosphorylation,
suggesting the possibility of metabolic reprogramming in the non-
angiogenic tumours. The second finding was the decreased level, in the
same tumours, of a set of adhesion molecule genes, raising the
hypothesis that diminished cell to cell contact might be associated with
failure to develop a vascular infrastructure [43].

In animal models, inactivation of P53 has been found to lead to
resistance to anti angiogenic drugs by increasing the ability of the cells
to survive in hypoxia [44]. As pilot study on a small number of lung
cancers suggested a higher incidence of P53 mutations in non-
angiogenic tumours [13] this could be another mechanism by which
neoplastic cells could grow in an hypoxic environment without
triggering neo angiogensis

The evidence so far suggest that the type of vascularization
associated with a tumor reflects the biology of the malignant cells on
one side and the anatomical structure of the organ on the other. It has
been recently started to be demonstrated that blood vessels provide
not only oxygen and nutrients, but that they also secrete a large and
diverse number of cytokines and growth factors in a paracrine manner
[called “angiocrines”], which affect/stimulate tumor growth. It could
well be that both angiogenic and non-angiogenic pattern of growth
are, at least in part, dictated by the angiocrine activity of the vessels
involved. [23]

Finally, whatever the site of non-angiogenic growth, the possibility
that antiangiogenic facotors are blocking the triggering of vascular
growth should be also investigated.

Blood vessels and anti angiogenic treatment
As predicted when non-angiogenic tumours were first described

[5], vascular co-option is now being increasingly considered as one of
the likely leading causes of reduced responses or intrinsic resistance to
antiangiogenic treatment [45], especially of metastases in organ such
as the lungs and liver. Nevertheless, this constitutes only one piece of
the response/resistance puzzle, and there are likely many reasons for
the limited clinical benefits in prolonging progression free or overall
survival outcomes in cancer patients receiving antiangiogenic drug
treatments.

One is the underappreciated heterogeneous nature of the tumor
vasculature, including the angiogenic vasculature populating tumors,
and this especially applies to spontaneous tumors that have existed for
a considerable period of time - perhaps years - in patients, as opposed
to rapidly growing transplanted tumors in mice.

The work of Dvorak and colleagues has revealed evidence for such
extensive tumor blood vessel heterogeneity and the fact that certain
types of abnormal tumor blood vessels are not necessarily VEGF-
dependent [46]. Moreover, antiangiogenic drug treatments may alter
this morphologic and functional tumor blood vessel heterogeneity,
and indeed, vessel normalization in tumors as a consequence of
antiangiogenic therapy may be an example of this [47]. The nature of
this heterogeneity may be strongly influenced by metastatic spread,
and this may help explain why in some preclinical studies distant lung
metastases are unresponsive to a drug such as sunitinib, in contrast the
same tumour cell line is treated as a primary tumor mass [48]. Such
results highlight one of the deficiencies of most types of conventional
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mouse tumor therapy models, which rarely involve treatment of
established visceral metastatic disease [49].

If on one hand the description of non-angiogenic tumours helps to
explain why the clinical benefits of anti angiogenic drugs have been
modest so far, on the other hand their understanding can become a
tool to better use these drugs and exploit their potential to the full. The
identification of how much of vascular co-option and classic
angiogenesis is present in tumours will help to distinguish those which
are more likely to benefit from anti-angiogenic drugs from those
which are less likely. It is therefore conceivable that this approach
could lead to obtain better results from drugs targeting classic
angiogensis.

Furthermore by unveiling the pathways dictating the non-
angiogenic growth of cancer cells new targets for treatment could be
discovered leading to develop a new class of anti-vascular drugs.

Conclusion: “Inducing angiogenesis” a hallmark too far?
The blood supply of a tumour can be provided not only by

neoangiogenesis, but also by pre-existing vasculature exploited by
cancer cells growing into a non-angiogenic primary or metastatic
tumour. A mixed pattern of pre-existing and newly formed vessels is
also commonly seen in many types of cancers. Therefore, contrary to
the theory of Folkman [3], still regarded as one of Hallmark of Cancer
[21], it is now well established that some tumours can grow and
metastatize in absence of angiogenesis [4]. The reason for the delay in
reaching a more global view of the role of blood vessels in cancer can
be found in a gap between bedside and benchtop research [50-54].

The biological implications are that the triggering of hypoxia related
pathways does not necessarily leads to angiogenesis, and that to target
tumour blood supply directly may fail because of co-option. Following
the initial modest results obtained so far with anti angiogenic drugs
[45], understanding the mechanisms driving this behaviour is likely to
generate new therapy approaches for these resistant tumours.
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