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Abstract
The cure for Alzheimer's disease involves searching for candidate compounds that can act as inhibitors for 

Acetylcholinesterase (AChE) enzyme. Regional cerebral blood flow can be increased in patients with Alzheimer’s 
disease by Acetylcholinesterase inhibitors. In this regard, Tetraphenylporphinesulfonate (TPPS), 5,10,15,20-Tetrakis 
(4-sulfonatophenyl) porphyrinato Iron(III) Chloride (FeTPPS) and 5,10,15,20-Tetrakis (4-sulfonatophenyl) 
porphyrinatoIron(III) nitrosyl Chloride (FeNOTPPS) were investigated as candidate compounds for inhibition of 
Acteylcholinesterase of Drosophila melanogaster (DmAChE) by use of Molecular Docking. FeNOTPPS was found 
to form the most stable complex with DmAChE.

Introduction
Alzheimer’s disease is a progressive neurodegenerative disorder. 

Brain regions that are associated with higher mental functions, such 
as the neocortex and hippocampus, are those affected by the disease 
[1]. The “Cholinergic Hypothesis” for Alzheimer’s disease proposes 
that degeneration of cholinergic neurons in the basal forebrain and 
the associated loss of cholinergic neurotransmission in the cerebral 
cortex and other areas contribute significantly to the deterioration 
in cognitive function seen in patients with Alzheimer’s disease [2] 
(Figure 1).

Acetylcholinesterase enzyme (AChE) is bound to cellular 
membranes of excitable tissues at cholinergic synaptic junctions. It 
catalyzes the hydrolysis of Acetylcholine neurotransmitter present in 
the brain [3]. The structure of AChE is a 12-stranded mixed β-sheet 
surrounded by 14 α- helices. There is a catalytic triad present in the 
active-site gorge of the Acteylcholinesterase enzyme of Drosophila 
melanogaster (DmAChE) which consists of three amino acids, namely 
Ser238, His440 and Glu367 (Figure 2). 

Due to the toxic effects of pre-existing AChE inhibitors, current 
research is focused on developing new AChE inhibitors or modifying 
existing by computational methods to determine which ligand best fits 
the AChE binding site. In this study, molecular docking was used to 
predict the strength of binding of Porphyrin-derivatives: TPPS, FeTPPS 
and FeNOTPPS with DmAChE. The strength of binding was quantified 
by use of a Scoring Function that approximates the free energy of 
binding [4,5] obtained by Molecular Docking of TPPS, FeTPPS and 
FeNOTPPS with DmAChE. 

Methodology
Ligands

Tetraphenyl porphinesulfonate (TPPS), 5, 10, 15, 20-Tetrakis 

Figure 1: Proposed neurochemical changes in Alzheimer's disease.

Figure 2: Schematic representation of the sites in DmAChE. The catalytic triad 
in the Acyl Binding Pocket consists of three amino acids, Ser238, His440 and 
Glu367.
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(4-sulfonatophenyl) porphyrinato Iron (III) Chloride (FeTPPS) and 
5,10,15,20-Tetrakis (4-sulfonatophenyl) porphyrinato Iron(III) nitrosyl 
Chloride (FeNOTPPS), were constructed on a Silicon Graphics Octane2 
workstation using IRIX 6.5 operating system. The energies of all the 
molecules were minimized using the TRIPOS force field and Gasteiger-
Hückel charges with a convergence gradient of 0.05 kcal/mol/Å. 
For FeTPPS, the coordinate bonds of Fe(III) and pyrrole nitrogen 
were defined first before energy minimization. For FeNOTPPS, the 
coordinate bonds of Fe(III) were first defined with pyrrole nitrogen and 
then with nitric oxide. 

Molecular docking

SYBL software was used for docking TPPS, FeTPPS and FeNOTPPS 
in the crystal structure of DmAChE (PDB code: 1QON) (Figure 3). 
These complexes were then subjected to molecular dynamics simulation 
for 10,000 fs then subjected to energy minimization using a TRIPOS 
force field and Gasteiger-Hückel charges with a convergence gradient 
of 0.05 kcal/mol/Å.

Analysis of binding

The strength of binding of TPPS, FeTPPS and FeNOTPPS to 
DmAChE (PDB code: 1QON) was determined by the use of Scoring 
Functions. Scoring Functions are expressed as a sum of separate 
terms that describe the various contributions to binding [6,7]. Scoring 
Functions include terms for van der Waals interactions, hydrogen 
bonding, de-solvation effects, metal ligand bonding, etc [8-11]. A high 
value of the Scoring Function represents “tight” binding between the 
protein and the ligand and vice versa.

Results and Discussion
The “Cholinergic hypothesis” states that the destruction of 

cholinergic neurons in the basal forebrain results in the deterioration 
of cognitive function in Alzheimer’s disease [12]. Biochemical 
investigations of biopsy tissue taken from patients show that presynaptic 
markers of the cholinergic system are reduced in number [13]. This is 
results in the reduction of AChE activity which leads to the degree of 
loss of cognition in patients with Alzheimer’s disease [13-16]. 

The tertiary structure of DmAChE is similar to that of other 
vertebrate AChEs. The differences are in some of the surface loops 
which deviate by up to 8 Å, and the C-terminal helix is also shifted 
substantially. The potential surface of DmAChE is also similar to 
that of other AChE molecules which includes the vertebrate AChE 
[17,18]. It shows the presence of negative charges near the opening of 

the active-site gorge and positive charges on the opposite side of the 
molecule (Figure. 4a). The direction of the molecular dipole moment is 
approximately along the axis of the active-site gorge (Figure. 4b). 

An important feature of the active site of DmAChE is a 20 Å long, 
deep and narrow gorge that is coated with aromatic residues (Figure 
2). Their side chains can interact with various inhibitors via non-
covalent interactions by assuming different conformations [19]. The 
experimental results show that the active-site gorge of DmAChE can 
allow the porphyrin inhibitors to enter which can result in blockage 
of the further entry of the of acetylcholine substrate. The experimental 
data (Table 1) also demonstrates that FeNOTPPS is energetically the 
most stable in DmAChE. This can be due to the greater hydrophobicity 
of FeNOTPPS as compared to TPPS and FeTPPS. The larger size of 
FeNOTPPS makes it less soluble in water and more stable in the active-
site gorge of DmAChE. FeNOTPPS is energetically more stable than 
TPPS and FeTPPS when bound to DmAChE.

The breakdown of cholinergic neurons observed in Alzheimer’s 
disease cause atherosclerosis, arteriosclerosis, arterial stiffness, and 

Figure 3: Clockwise from the top, docking of TPPS, FeTPPS and FeNOTPPS 
with Acetylcholinesterase from Drosophila melanogaster.

Figure 4 (a): Representation of solvent-accessible molecular surface. The 
entrance to the active-site gorge is centered within the large red area near the 
top left. Color coding represents electrostatic potential surfaces: 2.5 kT/e in 
blue and 22.5 kT/e in red. (b): Schematic drawing of the 60.25 kT/e isopotential 
surface of DmAChE. Orientation is the same as in (a), and the green arrow 
denotes the direction of the dipole moment.

Molecule *Value of Scoring Function 
TPPS 1955738102

FeTPPS 1604890320
FeNOTPPS 21918620930

Table 1: *Scoring Functions include terms for van der Waals interactions, hydrogen 
bonding, desolvation effects and metal-ligand bonding. They predict the strength of 
the non-covalent interactions between two molecules.
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endothelial dysfunction which result in damage to the blood-brain 
barrier and brain function. These factors can reduce perfusion of the 
brain by arterial blood, resulting in ischemia/hypoxia and neuronal and 
glial injury [20]. Inestrosa et al. [21] have reported that AChE enzyme 
promotes amyloid plaque formation from amyloid-β peptide. The 
formation of amyloid plaques can be inhibited by ligands such as TPPS, 
FeTPPS and FeNOTPPS.

Conclusion
The results show that Tetraphenylporphinesulfonate (TPPS), 

5,10,15,20-Tetrakis (4-sulfonatophenyl) porphyrinato Iron(III) 
Chloride (FeTPPS) and 5,10,15,20-Tetrakis (4-sulfonatophenyl) 
porphyrinatoIron(III) nitrosyl Chloride (FeNOTPPS) can serve 
as inhibitors of acteylcholinesterase of Drosophila melanogaster 
(DmAChE). This is significant in light of the fact that this model can be 
transposed to humans and these inhibitors can be employed to increase 
regional cerebral blood flow in patients with Alzheimer’s disease.
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