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During the last 15 years, molecular techniques have led to a fast 
gain in our knowledge on the development of melanocytic tumors. The 
potential implications of these advances for prognosis and therapy of 
melanoma patients are outstanding. There is, however, an even greater 
problem which has to be raised: since the histopathological diagnosis of 
melanoma is matter of considerable disagreement even among experts 
[1]. Pathologists have been increasingly asking for a molecular ‘key to 
the code’ in order to overcome the diagnostic limitations of conventional 
morphology. Table 1 summarizes the main molecular techniques and 
their expected results in melanoma [2], are these data meaningful also 
for the histopathological differential diagnosis between ‘nevus’ and 
‘melanoma’?

Whole exome sequencing performed on metastatic tumor tissue has 
demonstrated that melanoma has the highest mutation rate among all 
human cancer types (16.8 mutations/Mb) [3] However, these data do not 
necessarily apply to primary cutaneous tumors. Of the latter, over 80% 
of cases harbor mutations involving the RAS-RAF-MEK-ERK pathway 
which is also affected in nevi [4]. In the field of Spitzoid melanocytic 
tumors, fluorescence in-situ hybridization with break-apart probes 
demonstrate kinase fusions of ROS1, NTRK1, ALK, BRAF, and RET; 
but these chromosomal rearrangements are present along the entire 
spectrum of Spitzoid tumors (55% of Spitz nevi; 56% of atypical Spitz 
tumors; 39% of Spitzoid melanomas) [5], a finding that clearly hampers 
the diagnostic usefulness of such a molecular signature. The same is also 
true for homozygous BAP1 (3p21) mutations, which can be found in 

a subset of syndromic and sporadic atypical epithelioid (Spitzoid) cell 
nevi but also in morphologically clear-cut melanomas [6]. Despite early 
claims about 11p gains or mutations of the HRAS exon 3 as a hallmark 
of benignity in Spitzoid neoplasms [7], cases of melanoma with HRAS 
mutations can be found as well [8]. One could therefore conclude, along 
with Dummer et al. [9] that the expectations on molecular biology in the 
differential diagnosis of melanocytic lesions have been overestimated.

In our opinion, a completely sceptic approach about the diagnostic 
impact of molecular techniques in this field is probably NOT justified. 
First of all, molecular techniques may help recognize as melanoma 
an undifferentiated malignancy with a ‘null’ immunophenotype 
[10]. Furthermore, and even more important, some subgroups of 
melanocytic tumors, irrespective of the degree of histopathological 
atypia, can be identified on a molecular basis. As underlined above, 
Spitzoid neoplasms can be typified by kinase fusions [5], BAP1 biallelic 
inactivating mutations [6], or HRAS gains/mutations [7]; along with 
83% of uveal melanomas [11] activating mutations of GNAQ (9p21) 
and GNA11 (19p13) are a hallmark for dermal dendritic melanocytic 
tumors (blue nevus and related lesions) [12]. Both in Spitzoid and 

Technique Expected results in melanoma

(Array) Comparative 
Genomic Hybridization

Gains at 1q, 6p, 7p, 7q, 8q, 17q, 20q, 4q, 8q, and 
11q. 

Losses at 6q, 9p, 10p, 10q, 11q, and 21q

Fluorescence in situ 
hybridization

RREB1 gain >29%; RREB1 gain relative to Cep6 
> 55%; CCND1 gain >38%; MYB loss relative to 
CEP6 >31%; MYC gain >29%; CDKN2A biallelic 

loss relative to Cep9 >29%; kinase fusions of 
ROS1, NTRK1, ALK, BRAF, and RET in Spitzoid 

melanoma (39%)

Gene expression profiling

Compared with nevi, different expression of a set 
of genes including PRAME, S100A7, S100A8, 
S100A9, S100A12, PI3, CCL5, CD38, CXCL9, 

CXCL10, IRF1, LCP2, PTPRC, SELL

DNA sequencing

In familial melanoma: mutations of CDKN2A (40%), 
MITF (20%), CDK4, BAP1, TERT, POT1

In sporadic melanoma: mutations of BRAF (53-
66%), NRAS (9-29%), NF1 (12-14%), KIT (36% of 

acral melanomas; 88% of oral melanomas), GNAQ/
GNA11 (50% of uveal melanomas)

DNA methylation profiling Methylation of promoters of CDKN2A, PTEN, 
RASSF-1A, RASSF10, RAR-beta2

Micro-ribonucleic acid 
(MiRNA) profiling

Upregulation of miRNA192; down regulation of 
miRNA132 

Mass spectrometry
Actin, Vimentin, and three unknown peptides 

differently expressed in Spitz nevi and Spitzoid 
melanoma

Table 1: Molecular investigations for melanoma diagnosis.

Figure 1: A) A verrucous melanocytic tumor of the arm in a 7-year-old boy. B) 
A confluent junctional proliferation of melanocytes with a strikingly irregular 
epidermal hyperplasia. C) Relativerly monomorhic epithelioid cells at the 
dermoepidermal junction. D) The deep dermal component of the tumor with a 
mitosis (arrow). The lesion was diagnosed as atypical Spitz tumor, but, unlike 
atypical Spitz tumors, it harbored the BRAFV600E mutation and behaved as a 
‘conventional’ melanoma.
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in dendritic cell melanocytic tumors, BRAF or NRAS mutation are 
very rare [12,13]; thus, if a BRAF or NRAS mutation is detected in a 
seemingly ‘Spitzoid’ or ‘dendritic cell’ morphologic context, a careful 
histopathological re-evaluation is warranted in order to exclude a 
conventional melanocytic malignancy. Figure 1 illustrates a case of 
melanocytic tumor of the arm in a 7-year-old boy. The lesion was 
initially diagnosed as an atypical Spitz tumor, mainly because of the 
age of the patient, the epidermal hyperplasia, and the epithelioid cell 
morphology. Unfortunately however, four years after wide excision 
of the primary tumor, the patient developed a cutaneous satellitosis, 
along with nodal and distant metastases. Both the primary and the 
metastatic tumor tissue were found to harbor the BRAFV600E mutation, a 
finding which was obviously much more in keeping with a conventional 
melanoma rather than with an atypical Spitz tumor.

In conclusion, the main goal which can be achieved with 
molecular techniques in the diagnosis of melanocytic skin lesions 
is the identification of a given “subgroup” of tumors (“conventional” 
vs “Spitzoid” vs “dendritic cell”). A ‘red flag’ must be raised for a 
melanocytic tumor in which molecular data are conflicting with the 
apparent clinicopathological context. 
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