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Introduction
Water resources are a main component of natural systems that 

might be affected by climate change; several series hypothetical 
scenarios are imposed with regard to the precipitation and temperature 
data in order to make a hydrological model relating to the climate 
change. The Middle East and the adjacent Mediterranean region 
have been identified as a hot spot for climate change, projected with 
strong decrease in precipitation and increase in temperature for the 
near future [1]. Lebanon is in the Eastern Mediterranean area; the 
climate is characterized by hot dry summers and short wet winters. 
The rainy season of the Lebanese country is between December and 
February and the dry season occurs between June and August. This 
article focuses on the study of the relation between three climatology 
factors on the Litani river in Lebanon. The Litani river is the largest 
and longest river in Lebanon, generating about 30% of the total 
surface of water runoff in all the rivers that runoff in the Lebanese 
territories [2]. The total drainage area of the basin is about 2,175 
km² with a channel length of about 170 km and an annual runoff of 
750 million m³. The Litani basin is divided into two parts, the Upper 
Litani basin (ULB) and the Lower Litani basin (LLB) and has nine 
tributaries. The ULB is located between altitudes 615 and 800 m and 
drains to the Qaraoun reservoir. It occupies about 70% of the total 
Litani basin with a length of 5.4 km and a width of 2.1 km in which 
the total water capacity is 220 Million m³. The Qaraoun reservoir 
divides the basin into two distinct entities with contrasting climatic 
conditions: the ULB is considered mountainous, and the LLB is 
almost in the coastal zone; this provides an opportunity to study and 
compare the hydrological responses of climate change in a watershed 
divided into two heterogeneous orographic features, illustrating the 
importance of controlling local characteristics. Therefore, since the 
upper basin is dominated by a relatively large elevation zone, it is 
expected to be subject to higher precipitation and snow rates thus 
affecting the runoff sustainability and seasonality while the lower 
coastal basin should be more exposed to higher temperatures and 
lower precipitation.

Runoff, the most important component of the hydrological cycle, 
is subject to variation that should be influenced by climate change and 
human activities [3,4]. The runoff of Litani river in a given period, which 
is affected by the current meteorological factors and the meteorological 
and fluvial factors of the preceding periods have major influences on 
the precipitation and the temperature.

The average global temperature on Earth has increased by about 
1.1°C since 1880. In addition, the Intergovernmental Panel on Climate 
Change (IPCC) predicts an increase of 2° to 4 °C over the next 100 
years. According to the World Bank studies in Lebanon, the cost of 
damage caused by climate change to its economy would exceed 80 
billion dollars in 2040. As such, the economic cost in the agricultural 
sector will therefore be 300 million dollars in 2020. In recent decades, 
the temperature in Lebanon is increasing from year to year, the 
precipitations have become radically different and the level of the 
snowfall is decreasing gradually.

The average annual precipitation value is estimated to be between 
700 and 1100 mm in the coastal zone, 200 to 800 mm in the Beqaa Valley 
and around 2000 mm in the mountains. The annual precipitation is 
capable of generating an average annual runoff of 8600 million cubic 
meters, which feeds the 40 main rivers and streams (including 17 
perennial rivers) and more than 2000 springs.

Most runoff modeling studies on the rivers have focused on the 
application of deterministic and stochastic models which require 
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Abstract
Runoff is critically important for humans in their ecological and economic activities; hence, the ability to estimate 

the possible runoff change in response to changes in precipitation and temperature is highly desirable. In this article, 
two advanced methods are used to evaluate and quantify the relation and the impact of the runoff, precipitation and 
temperature in the Litani river in Lebanon. Firstly, the classical regression linear model method showed the relationships 
and the correlation between the factors; also, the regression lag linear model was used to evaluate the dependency 
of these factors at different times. Secondly, the advanced optimization shuffled complex method is a general method 
which can be used during the absence of the nonlinearity data in order to evaluate the impact of the temperature and 
precipitation data on the runoff data of the Litani river at different period.
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significant level of expertise. There are other simpler and similar 
effective approaches that have been rarely considered in this article, 
namely the multiple linear regression model (MLRM) and shuffled 
complex method (SCM) which are adopted in this study on the Litani 
river.

The main goal of this article is to study the evolution of the 
relationship between the three climatological factors (Runoff, 
Temperature, and Precipitation) in the Litani river in Lebanon 
while noting that the annual data for the three variables are available 
as recorded from 1962 to 2017. Such data are collected from the 
World Bank, the Litani National Authority and the Lebanese State 
Agricultural Research Authority [5]. Also, this article presents the 
runoff modeling at Litani in order to show the impacts of temperature 
and precipitation on runoff in the Litani river in Lebanon using the 
multiple linear regression model (MLRM) and the shuffled complex 
method (SCM) to optimize the proposal model by using the minimum 
meteorological factors and to compare the performance of these two 
methods. For this study, the data is used to perform the modeling of 
the runoff, temperature and precipitation since these variables have the 
greatest impact on the river runoff in the Litani and are most often 
available. The selection of these data is based on two criteria, namely 
the availability of data and the increased correlation between these 
parameters as demonstrated by several previous studies [6-9]. The data 
used in this study are annual averages covering the period from 1962 to 
2017. To test the validity of both models, the data series were divided 
into series of training (calibration) (1962-2000) and evaluation series 
(validation) (2001-2017).

Method 

The Two categories of models are used for processing the time 
series [10]. The first category considers that the data is a function of 
time and can be adjusted by the least squares method, or other iterative 
methods [11]. The second category determines each value of the series 
according to the previous values in which we used the multiple lag-linear 
regression model (MLLRM) [12]. The MLRM attempts in this article 
are to show the relationship between several independent variables 
(Temperature, Precipitation) and a dependent variable (Runoff) by 
adopting a linear equation to the observed data. Regression methods 
are based on the assumption of linearity hence we use the least square 
method for estimating the parameters to indicate if the independent 
variable has significant relationship with dependent variable [13,14].

After using the classical model (MLRM), the objective of the 
optimization method (SCM) is to determine the coefficients of the model 
by finding the minimum of the cost function. However, the approach 
would not be necessarily reliable if the problem is poorly posed or difficult 
and if the number of parameter is large. The calculation time can be long 
if we often have to call the physical model [15]. Moreover, a convergence 
towards a local minimum is possible in giving a degraded solution. There 
are several approaches in solving this difficulty [16].

During the 1980s, several efficient optimization algorithms were 
developed, such as simulated annealing [17], genetic algorithms [18], 
SCE-UA and Simulated Annealed Simplex [15-19]. These algorithms 
have been applied to runoff model problems [15,20-22,24]. Although 
the SCEUA algorithm is distinct from other optimization algorithms 
for the calibration problem of runoff models with respect to efficiency 
and the efficiency criteria as evidenced by several studies [22,25], 
it did not stop researchers from proceeding with the work in the 
direction of improving the performance of this algorithm by testing 
new techniques and modifying the exploration and exploitation 

mechanisms of this algorithm [23-26]. Some researchers have tried to 
introduce modifications to the SCE-UA's Simplex evaluative procedure 
by implementing further additional steps to their search mechanism 
to reduce the volume of search space, or by modifying the method 
with this algorithm generating its initial population [26-28]. The 
best modification to SCE-UA is that issued by Mutill and Liong who 
proposed the addition of a step to the SCE-UA engine algorithm the 
Evaluative Simplex [27]. In this article, we also propose to apply this 
change to model calibration SCE-UA. We note that the MLRM consist 
of studying the linear relation between several hydro meteorological 
factors, whereas the SCM method consists to study these factors in a 
non-linearity case.

The SCE method is based on a global optimization strategy, which 
combines several concepts of evolutionary theories, the Nelder-Mead 
method (downhill simplex procedure), a random draw on populations, 
the 'complex shuffling' and an evolution of populations 'Competitive 
Complex Evolution'.

The function 𝑓 (𝑥) is the cost function we want to minimize. In 
our case, it is defined by the average annual runoffs calculated and 
measured:
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In this article, the statistical software R3.5.1, XLSTAT and C++ 

are respectively used to develop the MLRM models and the Shuffled 
Complex Method [29,30].

In order to compare the results between the different numerical 
methods (SCM and MLRM), three performance indices were calculated 
for each series: the coefficient of determination (𝑅2); standard error (𝐸) 
and bias. The coefficient of determination (𝑅2); is the percentage of the 
total error on the dependent variable (R (t): Runoff) explained by the 
model. This coefficient is expressed by:
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Where R (t) is the observed value, ̅𝑅̅̅(̅𝑡̅̅) is the average of the observed 
values and 𝑅̂ (𝑡) is the estimated value by the model. The standard error 
(𝐸) is given by the following equation:
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While the bias is given by the following equation:

( (t) (t))Bias R R= −∑
Results and Discussion
Descriptive statistics

In order to discover the variation of the three factors we illustrate 
each of them based on the some descriptive statistics.

Table 1 shows the descriptive statistics for each factor: for example, we 
note that the annual mean for each 3 factors (Temperature, Precipitation, 
and Runoff) during the 1962-2017 are respectively equal to 16.12, 653.43, 
and 10.30. In addition, we notice that the variation of annual mean 
temperature is high ranging at Max 17.98 and Min 14.65. It is clear that 
25% (1st Quartile) of the mean annual runoff over 55 years is less than 
5.49 and 25% of the mean annual precipitation less than 558.82 and 50% 
(Median) of the annual mean temperature greater than 16.15.
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Multiple Linear Regression Model (MLRM)

The objective of this subsection is to evaluate the relation between the 
hydro meteorological factors in the Litani basin in Lebanon. As such, it is 
important to study the correlation between runoff R (t) and meteorological 
variables (temperature (T (t)), precipitation (P (t))) at annual mean scales. 
The changes in the correlations between runoff and other variables were 
determined for different years. In order to study the relationship between 
different factors, we use the MLRM which is a statistical tool used to 
process multidimensional data. The variable "runoff" is considered as 
the dependent variable to be explained the two independent variables 
"temperature" and "precipitation". The model is as follows:

𝑅(𝑡) = 𝑎0 + 𝑎1 ∗ 𝑃(𝑡) + 𝑎2 ∗ 𝑇(𝑡) + 𝜖(𝑡)

With "𝑎0, 𝑎1, 𝑎2" are the parameters of the model, and 𝜖 is the error 
of the model.

Coefficient of correlation

The coefficient of correlation gives the form of the relation between 
the three factors (runoff, temperature, precipitation) during 1962-2017 
(Table 2).

We remark a strong positive relation between the precipitation and 
runoff factors and a weak negative relation between temperature and 
runoff in addition to a very weak relation between precipitation and 
temperature, for the annual period 1962-2017

Estimation of the parameters

The quality of the (MLRM) is reflected from calculating the 
coefficient of determination (𝑅2=65.4%>50%), which confirms that the 
MLRM can be improved by studying the MLLRM in the next section. 
Also, the global model is significant, with a significance equal to 0 
(s𝑖𝑔=0<0.05). To test the significance of the variables (𝑡), 𝑇(𝑡) we use 
the statistical test (t-test) and we find the significance:

𝑆𝑖𝑔 (𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒)=0.024<0.05, the temperature is significant in 
the model, and a current impact of the temperature on the runoff factor 
in the Litani river.

𝑆𝑖𝑔 (𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛)=0<0.05, the precipitation variable is 
significant, and a current impact of the precipitation on the runoff 
factor in the Litani river.

In general, we notice that the influence of precipitation on the 
runoff is more important than the temperature since the degree of the 
significance for the variable precipitation is smaller than that of the 
temperature. So the adjusted model is given by the following equation:

R (𝑡) = 20.003 − 1.802 ∗ 𝑇   (𝑡) + 0.03 ∗ 𝑃  (𝑡)

𝑓𝑜𝑟 1962 ≤ 𝑡 ≤ 2017

Multiple Lag- Linear Regression Model (MLLRM)

In this section we construct the general regression model for different 
period to study the relationship between the three factors (Runoff R (t), 
Temperature T(t), Precipitation P(t)). The follow equation shows:

R (𝑡) = 𝑓  (𝑃 (𝑡), 𝑃   (𝑡 −  1), 𝑇 (𝑡),  𝑇 (𝑡 − 1), 𝑅 (𝑡 − 1))

Where, (𝑡) represent the Runoff at time 𝑡; (𝑡 − 1) is the Runoff at 
time t-1. The time lag of precipitation is given by (𝑡): at time t and (𝑡 − 
1): at time t-1. Similarly, for the time lag of the variable temperature.

Based on Table 3, we can find the significance correlation between 
the factors at different time, which depends on the matrix distribution. 

Therefore, we remark from the model (𝑝 𝑣𝑎𝑙𝑢𝑒=0.241>0.05 
(significance level) that the impact of temperature at time t can be 
negligible, so the absence of correlation between the temperature and 
runoff at time t. In other side, there exists a significant relation between 
the runoffs at time t with (𝑡), (𝑡 − 1) and (𝑡 − 1).

This relation between 𝑅 (𝑡), 𝑅 (𝑡 − 1), 𝑃 (𝑡), 𝑇 (𝑡 − 1) taking in 
consideration the runoff at t-1 and the temperature at t-1 the coefficient 
of determination (𝑅2) is bigger than 𝑅2 in case of using only the factors 
at time t.

Regression of variable runoff (t)

The regression equations developed for the Litani river using 
stepwise regression approach (1962-2017) are given by the following 
models (Table 4):

I. 𝑀𝑜𝑑𝑒𝑙 1: (𝑡)=𝑎+𝑏 ∗ 𝑃 (𝑡)

II. 𝑀𝑜𝑑𝑒𝑙 2: (𝑡)=𝑎+𝑏 ∗ P (𝑡)+𝑐 ∗  𝑇 (𝑡 − 1)

III. 𝑀𝑜𝑑𝑒𝑙 3: (𝑡) = 𝑎+𝑏 ∗ P (𝑡)+𝑏 ∗ 𝑅  (𝑡 − 1) + 𝑐 ∗  𝑇 (𝑡 − 1)

The best model which corresponds to the higher, 𝑅2=71%. The 
estimated parameters of the model 3 are given by the following Table 5.

So we can write the final best model of MLLRM:

R(t) = 24.38 + 0.03 * P(t) + 0.17 * R(t -1) – 2.11 * T (t-1)

It was observed that the Multiple Linear Regression model got 
simulated very well with a small value of Mean Square Error, and a high 
value of R2, revealing that the model is quite efficient in predicting the 
runoff of Litani river. To verify this model we plot in the same axis the 
two series the observed and the adjusted value and we remark that the 
series of the model is compatible with the series of the observed value, 
noting that we detect three extremes values of the runoff in the years 
1966, 1967 and 1968 (Figure 1).

Shuffled Complex Evolution (SCE)

In this article, predicative analysis has to be applied for correctly 
modelling runoff (R), temperature (T) and precipitation (P) 
relationships. The follow equation shows this relationship between the 
factors:

𝐹 = 𝑓  (𝑃 (𝑡), 𝑃   (𝑡 −  1), … , 𝑃 (𝑡 − 𝑚),  … 𝑇 (𝑡 −  1), 𝑇   (𝑡 − 2), … 𝑇 
(𝑡 − 𝑛),  𝑅 (𝑡 − 1), … , 𝑅 (𝑡 −  𝑝))

Descriptive Statistics Temperature Precipitation Runoff
Number of observation 56 56 56

Minimum 14.65 309 1.93
Maximum 17.98 1121.5 32.12

Range 3.33 812.5 30.18
1st Quartile 15.73 558.82 5.49

Median 16.15 636.9 9.08
3rd Quartile 16.55 732.02 13.19

Mean 16.12 653.43 10.30
Standard deviation 0.65 166.24 6.21

Table 1: Descriptive statistics for the three factors.

Variables R (t) P (t) T (t)
R (t) 1 0.78 -0.16
P (t) 0.78 1 0.04
T (t) -0.16 0.04 1

Table 2: Correlation matrix (Pearson).
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Where, R (t-p): runoff at time t-p; p: maximum steps of time lag of 
runoff and P (t-m): precipitation at time t-m with m: maximum steps of 
time lag of precipitation. T (t-n): temperature at time t-n; n: maximum 
steps of time lag of temperature.

Different steps taken into consideration to construct the general 
model which we can apply for any value at the time t (Figure 2).

Validation of the SCM

In this paper, our model is a 4-dimensional function (constant 
value, precipitation of the current year, temperature and rain of the 
previous year). In such cases, the parameters ranges are:

-1000 < parametersi  < 1000

The following figure shows, the efficiency of the model in which 
convergence of the objective function was carried out before 1500 
iterations for all different runs (Figure 3).

Figures 3b-3d shows the varied value of parameter of the variables 
(R (t-1), P (t), T (t-1)) according to the number of objective function 
calls during the calibration process with 20 runs (20 different initial 
random number seeds). In each run, the stopping criteria, which is 
used, is “the trial reached 2,000 function evaluations”.

The calculation of the runoff is sensitive to the parameters of 
the modelling. Based on Figure 3e, the results show clearly that this 
model is very sensitive to the precipitation parameter (the convergence 
is obtained before 300 iterations) whereas it is less sensitive to the 
parameters of the previous runoff and the previous temperature 
(convergence is realized between 600 and 1000 iterations).

Validation of the model

In the current study MLLRM technique was utilized on the 
normalized data using the software XLSTAT. The analysis of variance 
was done and the R2 and the root mean squared error (RMSE) were 
computed. The MLLRM model was validated by plotting the predicted 
runoff vs. actual runoff curve for years 1962-2000 in order to validate 
the prediction of years 2001-2017.

Table 6 gives the coefficients of the (MLLRM) and the standard 
error of each coefficient. According to this table, we find that there is 

a close relationship between the runoff and the dependent variables 
(R (t-1), P (t), and T (t-1)) due to the fact that all coefficients of 
the Student's t-test gave very low probability values (less than 5%). 
This means that each variable has a significant contribution on the 
runoff.

We obtain the following regression equation:

R (𝑡) = 3 6.32+0.028 ∗  (𝑡)+0.079 ∗ 𝑅 (𝑡 − 1) − 2.81 ∗  𝑇 (𝑡 −  1)

The coefficient of determination obtained for the training data 
(1962-2000) is equal to 65.1% (>50%) for the MLLRM, and 63.8% for 
the SCM, which gives a standard error of 2.85 for the MLLRM and 
3.95 for SCM. For validation data (2001-2017), the coefficients of 
determination are equal to 91.4% for MLLRM and 88.7% for SCM, 
with a standard deviation of errors 1.42 for MLLRM and 2.89 for SCM. 
During the study period (2001-2017), the calculated bias was equal to 
zero for the MLLRM and 0.407 for SCM. As such, we can conclude that 
it is possible to predict Litani water runoff using the optimal model 
function with respect to temperature at time t-1 T (t-1), runoff at time 
t-1 R (t-1) and precipitation at time t P (t); however, both of these 
modeling approaches demonstrate good performance in predicting 
water runoff in Litani river for the future. The results of these models 
are very similar to those observed, that is to say a good performance 
during the years 1962-2000 (Figure 4a) and 2001-2017 (Figure 4b). 
The MLLRM slightly improves the quality estimation of the runoff in 
Litani river compared to the SCM model.

Based on the Table 7 we can deduce the following graphs of the 
observed and adjusted value by the MLLRM in the training series 
(1962-2000) and validation series (2001-2017) (Figures 4a and 4b).

Conclusion
The objective of this study is to evaluate the runoff from the 

available climatological factors using models that are very rarely used 
in the literature, namely the SCM model and the MLLRM. The use of 
such models can subsequently predict or estimate the runoff in Litani 
river in various meteorological conditions or during periods of missing 
data. Each of the two models used has advantages and disadvantages; 
the SCM optimization method is very efficient but offers an unclear 
description of the relationship between input and output data 
whereas by use of MLLRM, an equation is determined that clarifies 
the relationship between input variables and runoff in Litani river. As 
demonstrated by our results, these two models give quite acceptable 
results with an overall standard error to 3.95 for the (SCM) and 2.85 

Variables R (t) P (t) T (t) R (t-1) P (t-1) T (t-1)
R (t) 0 <0.0001 0.241 0.008 0.056 0.036
P (t) <0.0001 0 0.773 0.149 0.280 0.709
T (t) 0.241 0.773 0 0.357 0.071 0.008

R (t-1) 0.008 0.149 0.357 0 <0.0001 0.241
P (t-1) 0.056 0.280 0.071 <0.0001 0 0.830
T (t-1) 0.036 0.709 0.008 0.241 0.830 0

Table 3: Significance test of the correlation between the factors at different time.

Model Variables MSE R²

1 P (t) 15.60 0.61
2 P (t); T (t-1) 13.38 0.67
3 P (t); R (t-1); T (t-1) 12.47 0.71

Table 4: Summary of the variables selection Runoff (t).

Variables Value Pr>|t|
P (t) 0.03 <0.0001

R (t-1) 0.17 0.035
T (t-1) -2.11 0.007

Table 5: Estimate parameters of the Model 3.
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Figure 1: Time series of the runoff (observed vs. predicted) value.

Figure 2: Runoff by the SCE method.

Figure 3a: Variations of each parameter by SCM (1962-2000) (Constant 
Value).

Figure 3b: Variations of each parameter by SCM (1962-2000) 
(Precipitation).
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Figure 3c: Variations of each parameter by SCM (1962-2000) (Runoff).
Figure 3d: Variations of each parameter by SCM (1962-2000) 
(Temperature).

Figure 4a: Observed and predicted runoff calculated with the MLLRM (1962-2000).

Figure 3e: Variations of each parameter by SCM (1962-2000) (Objective function (Logarithm Scale)).

Variables Coefficient Standard error
Constant 36.32 7.244

P (t) 0.028 0.004
R (t-1) 0.079 0.112
T (t-1) -2.81 0.062

Table 6: Coefficients and standard error of coefficients for the regression model.
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Figure 4b: Observed and predicted runoff calculated with the MLLRM (2001-2017).

Year R (t) observed R (t) adjust (MLRM) R (t) adjust (Shuffled)
2001-2002 5.18 7.10 6.14
2002-2003 24.94 21.26 23.46
2003-2004 16.22 15.58 12.33
2004-2005 13.09 12.92 10.09
2005-2006 7.11 9.12 4.64
2006-2007 5.98 6.58 6.24
2007-2008 3.73 1.95 2.41
2008-2009 5.85 6.94 9.07
2009-2010 9.21 9.45 10.23
2010-2011 8.83 11.65 11.02
2011-2012 14.82 13.61 15.58
2012-2013 13.48 15.60 14.45
2013-2014 2.45 -0.22 2.62
2014-2015 5.30 5.48 6.82
2015-2016 2.87 2.78 3.80
2016-2017 4.21 3.49 5.14
2017-2018 9.20 9.136 8.84

Biais (2001-2017) 0 0.41

Table 7: Comparison between MRLLM and SCM.

for the MLLRM. The advantage of the models presented in this study 
are mainly of their relative simplicity (development, application and 
updating of the model), compared to stochastic and deterministic 
models.

All obtained results allow us to conclude that the two proposed 
methods can be exploited for the estimation of Litani runoff. Indeed, 
the MLLRM has demonstrated a significant ability to learn and predict 
runoff. Besides, for the approach of the SCM, it also allows to have 
similar and effective results. The coefficients of determination for the 
training data which equal to 65.1% for the MLRM and 63.8% for the 
SCM with a standard errors equal to 1.42 for the MLRM and 2.89 for 
the SCM.

For validation data, the coefficients of determination are equal to 
91.4% for the MLRM and 88.7% for the SCM with standard errors 
equal to 1.42 for MLRM and 2.89 for MLRM. During the study for 
period (2001-2017), the calculated bias was equal to 0 for the MLRM 
and 0.43 for SCM. As such, we can conclude that it is possible to 
predict the runoff water by using the optimal model function with 

respect to temperature at time t-1; T (t-1); Runoff R (t-1) at time t-1 
and precipitation at time t P (t); however, both of these modeling 
approaches demonstrate good performance in predicting the future 
runoff in Litani river.

It is worth noting that while both models have similar deviations 
of similar errors over the entire study period, the bias criterion 
distinguishes these two sets of results. The variability of the variables 
during years of studying suggests good functioning of the two models 
in such conditions in a global manner. However, this study also shows 
low performance for the years subject to extreme runoff (low in 2000 
and high in 1968). On the other hand, variability appeared to be lower 
for average runoff, especially during the validation period of the 
regression model. We note a largest standard errors attributed mainly 
to the poor performance of the model in 1968 showing the presence 
of the extreme values. This suggests that the studies on models may be 
slightly more performance in average runoff conditions than extreme 
runoff thus making the interest of studying these extremes in future 
works.
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Finally, we note the effect of human activities on runoff response 
is only implicitly captured since human actions and decisions are 
increasingly having a larger proportional impact on the basin-scale 
changes. As such, future research is needed to explicitly account 
wherein we recommend the simpler regression models that are more 
suitable for scenario analysis and planning whereas the autoregressive 
time series are primarily applicable to improve our understanding in 
the operational purposes that will be useful to study in future work.
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