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Editorial
Transitional areas such as lagoons, ponds, lakes, located at the

interface between land and sea, are highly dynamic aquatic ecosystems
often characterized by high biological productivity and physical and
biogeochemical variability, as well as high naturalistic and economic
value [1]. Any environmental policy plan aiming at the preservation,
management and development of these coastal ecosystems requires
knowledge of their environmental state; therefore, no separate
estimations of single environmental parameters, but rather a multi-
disciplinary approach can lead to an “holistic” ecosystem
understanding.

Lagoons can act either as a sink for organic matter or as sources for
adjacent coastal areas, through organic and nutrient export; the
accumulation of organic matter is the result of the balance between “in
situ” production, terrestrial inputs, and processes of decomposition/
utilisation and burial in the sediment [2]. Generally, functional
characterisation of natural ecosystems relies on knowledge of
components, processes and structural relations. The ecosystems
biogeochemistry is strongly affected by the taxonomic (specific
composition) and metabolic (enzymatic activity profiles) properties of
the microbial community; therefore, knowledge of microbial structure
and functions is needed for improving our understanding of natural
ecosystem dynamics.

In aquatic environments, and especially in lake waters, organic
matter is mostly a heterogeneous matrix of polymeric compounds,
consisting of proteins (about 50%), polysaccharides (25%) and
chemicelluloses (25%) deriving from algae or benthic plants exudates,
terrestrial inputs and benthic resuspension. All these compounds are
high-molecular weight-polymers (higher than 600 Daltons), that prior
to their utilization require preliminary hydrolysis into smaller
molecules [3,4]. Therefore microbial utilization of organic polymers
depends on the synthesis of exo-(dissolved enzymes) and ecto-
enzymes (enzymes attached to microorganisms), usually produced by
heterotrophic bacteria, cyanobacteria, eukaryotic algae and
heterotrophic nanoflagellates [5]. Thanks to their high abundance,
biochemical diversity and quick turnover, microorganisms and in
particular heterotrophic bacteria are able to interact quickly with both
dissolved and particulate organic matter pools. The decomposition
process is generally considered a “bottleneck” for the microbial
utilization of both dissolved and particulate organic polymers and the
regeneration of inorganic nutrients in aquatic environments [6,7].
Microbial decomposition and heterotrophic utilization of organic
matter have significant implications on the chemistry and energy
fluxes as well as on the whole ecosystem functioning [8-11].

In coastal ecosystems, heterotrophic bacteria-organic matter
interactions are further complicated by abiotic and biotic forcing [12].

In fact, the synthesis and activity of enzymes depend on the
physiological state of the microbes and on the trophic conditions of the
environment [13]. Micro-organisms respond rapidly to changes in
nutrient and substrate availability - which frequently occur in coastal
ecosystems - modulating their enzymatic profiles in relation to new
organic polymers and, in turn, changes in the specific composition of
the microbial community affect the metabolic profiles of microbes and
consequently their contribution to decomposition process [14].

Simultaneous studies of microbial activities and particulate organic
matter give useful insights about changes in microbial metabolism in
response to trophic variability of water bodies. Functional information
on the ecological status could contribute to plan appropriate
environmental management strategies in the framework of a
sustainable use of natural resources [15-18]. Particularly, three
microbial ectoenzymes (leucine aminopeptidase, LAP; beta-
glucosidase, b-glu; alkaline phosphatase, AP) are mostly involved in
organic matter decomposition. LAP is an enzyme associated with the
decomposition of protein-derived polymers, although not directly
involved in the organic matter remineralization [7]. It is a very
widespread enzyme, synthesized by bacteria and cyanobacteria,
phytoplankton and zooplankton; LAP is involved in the decay of
particulate matter composed of living organisms or nonliving
materials, such as faecal pellets etc. [19]. B-glu is an enzyme specific for
the hydrolysis of cellobiose, a component of polymers such as cellulose
and mucopolysaccharides; therefore it is involved in the decomposition
of refractory vegetal debris, derived from “in situ” autochthonous
production or from allochthonous production. Other than bacteria,
also zooplankton and eukaryotes (fungi, diatoms, etc.) have shown to
be important producers of extracellular glycosidic activities [20-22].
AP is an enzyme involved in the mineralization of organic phosphates
with regeneration of phosphate; both bacteria and phytoplankton
contribute to its synthesis [23]. In eutrophic environments, AP is
produced in great amounts when inorganic P becomes limited,
suggesting its regulation by derepression mechanisms [24] and
supporting its use as an indicator of P deficiency of phytoplankton and
bacterial assemblages [23,25].

As most of the extracellular enzymes are adaptative and their
synthesis and activity is strongly affected by environmental and
biological factors [5,13], the relative importance of LAP, b-glu and AP
reflects differences in the relative composition of organic matter, in
terms of amounts of proteins, polysaccharides and organic phosphates,
respectively. The monitoring of prokaryotic properties improves the
classification of the ecological status and provides a tool comparable to
current indicators of environmental quality, but at a lower cost. Some
examples are reported here.

Caruso, J Ecosys Ecograph 2015, 5:2
DOI: 10.4172/2157-7625.1000e124

Editorial Open Access

J Ecosys Ecograph
ISSN:2157-7625 JEE, an open access journal

Volume 5 • Issue 2 • 1000e124

Journal of Ecosystem & EcographyJo
ur

na
l o

f E
cosystem & Ecography

ISSN: 2157-7625

mailto:gabriella.caruso@iamc.cnr.it


The trophic state of an aquatic ecosystem has been traditionally
characterized through the determination of nutrients, together with
chlorophyll-a concentration and water transparency, without
considering the important role played by the inhabiting microbial
community. Through enzyme measurements, Caruso et al. [26]
characterized the ecological status of some Mediterranean ponds. A
marked biogeochemical diversification of these environments was
found in relation to their organic and nutrient loading; higher values
and greater variability of microbial activity were found in the most
eutrophic lakes (LAP: 192.78 ± 102.11 and 294.34 ± 245.88 nmol
Leucine l-1 h-1;b-glu: 45.1 ± 117.42 and 37.8 ± 65.5 nmol Glu l-1 h-1;
AP: 209.0 ± 262.21 and 280.77 ± 452.0 nmol PO4l-1 h-1, respectively)
compared to the oligotrophic ones (LAP: 118.36 ± 34.72 nmol Leucine
l-1 h-1; b-glu: 5.71 ± 8.50 nmol Glu l-1 h-1; AP: 62.35 ± 108.54 nmol
PO4l-1h-1, respectively). Moreover, microbial activity rates were
higher in summer, suggesting that temperature and trophic supplies
stimulated the biological decomposition of organic polymers and
active nutrient recycling. Enzyme activities, and particularly LAP,
correlated significantly with the trophic parameters (particulate
organic matter or chlorophyll-a).

There are many studies where enzyme activities are related with the
trophic conditions of water bodies [6,27-29]. This relationship is
explained by the fact that high-molecular-weight substrates affect
microbial ectoenzyme activity, therefore the activity of some enzymes
may correlate with the trophic gradient. According to this
consideration, Chrost and Siuda [18] suggested the determination of
microbial activity as an indirect proxy for assessing the trophic state in
lakes, proving the existence of a tight coupling between the trophic
conditions and the extent of microbial processing over organic matter
(production, transformation and degradation) in the pelagial zone of
lakes located along an increasing gradient of eutrophication.

In three coastal lagoons Manini et al. [2] showed that organic matter
composition plays a key role in the ability of microbial loop to channel
C-biomass to higher trophic levels; indeed, quantity and quality of
sediment organic matter controlled the rates of organic matter
degradation, turnover rates (through breakdown of large
macromolecules) and utilisation by benthic heterotrophic organisms
(through bacterial C production). Also Pusceddu et al. [30] - in the
framework of the NITIDA project (New Indicators of Trophic state
and environmental quality of marine coastal ecosystems and
transitional environments) - demonstrated the close links among
trophic state, ecosystem efficiency, and biodiversity in transitional
ecosystems and concluded that the assessment of the environmental
quality of transitional ecosystems should be based upon a battery of
trophic state indicators of ecosystem functioning, efficiency, and
quality, among which the prokaryote efficiency in exploiting
enzymatically degraded organic Carbon has a preminent role.

Mazzola et al. [31] included the extracellular enzymatic activity
rates as functional indicators in a panel of bioindicators (trophic and
prokaryotic parameters, benthic invertebrates) to discriminate the
environmental quality of some Sicilian transitional ecosystems.
Moreover, Caruso et al. [32] explored the possibility to apply an
integrated (trophic+ microbial) approach to contribute to the
implementation of the Water Framework Directive (WFD), in the
perspective of establishing quality criteria which could be used for the
transitional waters classification and transferred to similar water
bodies. In this study, trophic (POC, Chl-a) and microbial (LAP, AP)
parameters described well the different metabolic functionality of the
studied water bodies; therefore, microbial parameters, such as

microbial activity measurements - in addition to those already
included in the WFD - were proposed as a promising approach to
better characterize the ecological status of the transitional systems. On
the other hand, this new integrated approach provided information
comparable to that given by indices conventionally used for the
assessment of trophic state (i.e. TRIX); nevertheless, microbial
variables described a more comprehensive scenario of the trophic
dynamics of transitional water systems and allowed a more efficient
characterization.

More recently, Caruso et al. [33] have reviewed the use of enzyme
activities as proxies of trophic parameters. Significant seasonal and
interannual variations in the patterns of microbial activity, in relation
to temperature, dissolved oxygen and trophic changes were found in a
brackish ecosystem [34]. Results obtained from several surveys have
indicated significant correlations between enzyme activity rates and
particulate organic matter or chlorophyll-a used as descriptors of the
trophic state and productivity of aquatic ecosystems; consequently, the
assay of LAP and AP has been suggested as a suitable and quick
approach to discriminate different water bodies according to their
trophic state. Furthermore, Sims et al. [35] have recently proposed a
multi-metric index which takes into account microbial indicators to
assess wetland health condition and to set up appropriate management
and restoration strategies.

During a two-years cycle of observations in a brackish ecosystem
(Cape Peloro, Sicily), Zaccone et al. [36] studied whether microbial
parameters could provide functional ecological information to monitor
the environmental health. Microbial indicators (vibrios abundance and
microbial activities) were found to be highly responsive to the spatial
and seasonal changes of environmental parameters, such as
temperature and trophic conditions. Positive correlations between
temperature and heterotrophic production, LAP, AP, particulate
organic carbon and nitrogen were observed in Ganzirri Lake,
indicating a direct stimulation of the warm season on the
heterotrophic prokaryotic metabolism. The global warming might
stimulate the growth of opportunistic Vibrio spp., resulting in an
improved degradation of labile organic matter. The relationships found
at seasonal scales between these bacteria and trophic conditions
suggested the combined use of vibrios abundance and microbial
activities as indicators to monitor the organic matter turnover within
lagoon areas.

Incorporation of microbial variables into the conventional
classification schemes developed for assessing the ecological status -
like Indicators and Methods for the Ecological status assessment under
the WFD, EUR 22314EN - could also provide information on
ecosystem functioning. Although the validation of the proposed
integrated approach on a broader scale is necessary, it may provide
users with a simple tool that gives a comprehensive view of microbial
processes and their effects on water biogeochemistry and productive
processes. In conclusion, the microbial parameters (both abundance
and activities) can be considered as a simple promising tool for
assessing the trophic status and environmental quality of transitional
areas, which could also be applied to other water bodies.
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