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Tauopathy and β Amyloid: The Neuropathological 
Markers of TBI

Traumatic brain injury (TBI) has long been a major public health 
issue. Approximately 1.7 million individuals currently suffer from 
TBI [1]. A significant portion of individuals with TBI (up to 24%) 
suffer “sustained TBI” for many years [2]. A particular concern is that 
sustained TBI has a tendency to take a chronically deteriorating course 
as the acute neuropathology of TBI initiates progressive apoptotic 
cascades leading to chronic neurodegenerative disorders such chronic 
traumatic encephalopathy (CTE) [3]. 

A large body of evidence from clinical studies with individuals 
with TBI and preclinical studies using TBI animal models indicates 
that hyperphosphorylated tau aggregation (tauopathy) and beta 
amyloid (Aβ) accumulation are the key neuropathological markers of 
CTE [3]. Interestingly, there are many similarities between CTE and 
Alzheimer’s disease (AD) [4] (Table 1). Tauopathy and Aβ deposits are 
the pathological hallmarks of both disorders. Hyperphosphorylated 
tau proteins in CTE are chemically similar to that observed in AD. 
For example, in CTE as well as AD, hyperphosphorylated tau protein 
contains all six isoforms and the amino acid sites of phosphorylation. In 
tau protein are the same between the two disorders [5]. Apolipoprotein 
E (ApoE) ε4 allele, a strong genetic factor for AD susceptibility and Aβ 
deposition [6], increases the risk of CTE [7]. Global cerebral atrophy 
suggesting progressive neuronal loss is also observed in both disorders 
[8]. Additionally, cognitive impairment is the key symptom of both 
disorders [9]. In fact, a number of individuals with TBI directly develop 
AD, suggesting that TBI is an important predisposing factor for AD [10]. 

Glycogen Synthase Kinase-3 Inhibition: A Novel 
Therapeutic Target for TBI

Glycogen synthase kinase-3 (GSK-3) is a serine/threonine 
kinase and is constitutively active, and keeps the large number of 
its substrates in inactive states [11]. GSK-3 has a strong tendency to 
block neuroprotection and neuronal survival and promote apoptosis 
by phosphorylating (thus, inactivating) its substrates involved in 
neuroprotection such as transcription factors and signaling molecules 
[12]. GSK-3 also exacerbates tauopathy and Aβ accumulation, the 
key neuropathological markers of both TBI and AD. Conversely, 

the inhibition of GSK-3β mitigates tauopathy and Aβ deposits and 
attenuates neurodegeneration in these disorders [13].

The receptor tyrosine kinase (RTK) and Wnt signaling pathways 
are the GSK-3 upstream signaling pathways that play important roles 
in neuroprotective, anti-apoptotic and neurotropic actions [14] (Figure 
1). These neuroplastic actions are largely mediated by down-regulating 
GSK-3 activity. A large number of neuro-active molecules including 
transcription factors and signaling molecules are constitutively in 
inactive states as they are inactivated (phosphorylated) by GSK-3. 
Activation of these pathways down-regulates GSK-3 activity and 
thereby, releases these molecules from inhibition by the enzyme. These 
activated molecules lead to diverse neuroprotection and neurotrophic 
actions. Studies with TBI rodent models have shown that RTK and Wnt 
signaling pathways are naturally activated shortly after TBI induced, and 
activation of the pathways is associated with neuroprotective actions 
against TBI-induced neuropathology [15,16] (Figure 1). Although 
these pathways may be an innate neuroprotective process against TBI, 
activation of these pathways is transiently and is not strong enough to 
produce sustainable therapeutic actions against TBI [15-17]. 

A number of studies using TBI rodent models strongly suggest that 
GSK-3 inhibition is a novel therapeutic target for TBI. Among many 
GSK-3 inhibitors, lithium is known to be a prototype GSK-3 inhibitor, 
which directly inhibits the enzyme as well as inhibits the enzyme by 
phosphorylating it [18] (Figure 1). Studies using TBI rodent models 
have demonstrated that lithium reduces TBI-induced neuropathology, 

exerts neuroprotective actions, promotes cell survival and reduces 
tauopathy and Aβ accumulation (Table 2). These effects are correlated 
with the therapeutic effects of the drug such as improving TBI-induced 
cognitive impairment, abnormal locomotor coordination, depressive 
and anxiety-like behaviors (Table 2). 

Lithium: Beyond GSK-3 Inhibition
Interestingly, SB-216763, a specific GSK-3 inhibitor, showed neither 

improvement in memory nor significant neuroprotection [17]. In 
contrast to SB-216763, lithium has neuroprotective actions beyond 
GSK-3 inhibition. Lithium inhibits GSK-3 activity by activating the 
RTK signaling pathway by stimulating phosphoinositide-3 kinase (PI3 
kinase) in the pathway [32] (Figure 1). Lithium also blocks protein 
kinase C activity by inhibiting inositol monophosphatase and stimulates 
cyclic AMP signaling pathways, leading to activation of transcription 
factors involved in neuroprotective and neurotrophic actions such as 
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CTE AD
Axonal damage + +
Synaptic/neuronal loss + +
Neurite degenration + +
Microgliasis + +
Neurofibrially tangles + +
Aβ/APP + +
Risk of Aβ/APP in 3x Transgenic AD 
Model>normal mice after TBI
Caspase-3 Induction + +

APOE4 Susceptible to 
CTE

Susceptible 
to AD

Table 1: Tauopathy, Aβ plaques, cognitive impairment in CTE and AD.
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Figure 1: Therapeutic targets in GSK-3-mediated signaling pathways in the treatment of TBI.
Lithium activates the RTK and Wnt signaling pathways by inhibiting GSK-3. Lithium also inhibits GSK-3 indirectly by activating phosphoinositide-3 kinase (PI3 kinase) 
in the RTK signaling pathway. Consequently, neuroactive molecules such as transcription factors such as p53, cyclic AMP response element binding protein (CREB), 
heat shock factor-1, c-Jun, Bax and Tcf/Lef are released from enzymatic inhibition of GSK-3 and lead diverse neuroprotection and neurotrophic actions. 

Animals, drug administration TBI lesion Neuron loss β-catenin  P-tau Aβ Anxiety/depression Cognitive function
Rat, posttraumatic for 5 days [26] ↓ ↓ ↑ ↑
Mice, posttraumatic for 2 weeks [27] ↓ ↓ ↓
Mice, posttraumatic for 3 weeks [28] ↓ ↓ ↑
Mice, pre-traumatic a single injection [29] ↑ ↓
Mice, pre-traumatic for 2 weeks,Post-traumatic for 4 weeks [30] ↓ ↓ ↑
Mice, post-traumatic for 3 weeks, subclinical doses of lithium/valproate [31] ↓ ↓ ↓

Table 2: Effects of lithium on the neuropathology and symptoms of TBI in TBI rodent models.

cyclic AMP responsive element (CREB) [19]. Furthermore, lithium has 
stabilizing properties of the inositol triphosphate-dependent receptor 
(IP3R) calcium channel localized to the membrane of the endoplasmic 
reticulum (ER), which is the primary storage of calcium as well as the 
major regulator of calcium concentration within the cell, by depleting 
IR3 supply to the IP3R [20,21]. Excessive activation of this channel 
triggers a wide array of neuropathological processes including apoptosis, 
impairments in synaptic plasticity and memory encoding, inflammatory 
responses and the formation of tauopathy and Aβ accumulation [22-
24] (Figure 2). Our recent study shows that lithium reduces excessive 
calcium release from ER in 3xTg AD rodent models [25]. This finding 
suggests that lithium can reduce neuropathological processes triggered 

by excessive calcium release from ER such as tauopathy and Ab deposit. 
Thus, in addition to the blockade of GSK-3 activity, diverse mechanisms 
for neuroprotection may be needed to produce robust therapeutic 
actions against TBI. In this context, lithium is a drug of particular 
interest for complex pathological conditions such as TBI or AD since the 
drug targets multiple pathogenic processes simultaneously (Figure 3). 

The molecular mechanism underlying tauopathy and Aβ 
accumulation is poorly understood. A number of studies have shown 
that tau protein is excessively hyperphosphorylated, and Aβ accumulates 
shortly after TBI produced. These neuropatholgical events contribute 
to the conversion of acute TBI to chronic neurodegeneration [4]. The 
molecular mechanism that triggers tauopathy and Aβ accumulation 



Citation: Shim SS (2017) Lithium: A Novel Therapeutic Drug for Traumatic Brain Injury. J Alzheimers Dis Parkinsonism 7: 327. doi: 10.4172/2161-
0460.1000327

Page 3 of 4

Volume 7   Issue 3 • 1000327
J Alzheimers Dis Parkinsonism, an open access journal
ISSN:2161-0460

Figure 2: Therapeutic targets in ER IP3R-gated calcium channel in the treatment of TBI. 
Excessive calcium release from ER triggers multiple neuropatholgical processes including excessive phosphorylated tau accumulation and Aβ deposit. Lithium blocks 
the synthesis of inositol-1,4,5-triphosphate (IP3) by inhibiting IMPase (inositol monophosphate phosphatase) as well as IPPase (inositol polyphosphate phosphatase) 
in the phosphatidyl inositol cycle. By blocking IP3 production, lithium reduces excessive calcium release from ER via IP3 dependent, receptor-gated calcium channel via 
deleting IP3 supply to the channel. Since excessive calcium release from the ER leads to neuropatholgical processes including hyperphosphorylated tau aggregation 
and Aβ deposit, the restoration of normal ER calcium release could block tauopathy and Aβ deposit.

Figure 3: Therapeutic mechanism of action of lithium for TBI. 
Lithium exerts neuroprotective and neurotrophic actions against TBI in diverse ways. Lithium activates the RTK and Wnt signaling cascades by inhibiting GSK-3 activity 
directly as well as stimulating the RTK signaling cascade by acting on PI3K in the RTK pathway. Lithium stimulates the cAMP-dependent cascade and thus activates 
transcription factors such as CREB. Lithium also blocks excessive calcium release from ER by reducing the supply of IP3 to the IP3 receptor dependent calcium channel 
at ER, and this action can reduce tauopathy and Aβ deposit. However, whether lithium actually reduces tauopathy and Aβ deposit by blocking excessive calcium 
release from ER via IP3-dependent calcium channels remains to be investigated.  
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following TBI is unknown. Understanding of that mechanism may lead 
to developing a novel therapeutic strategy in treating TBI and AD at the 
very early stages of the disorders.
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