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Introduction 

Prostate gland is a complex  organ  found  in  men  having 

different components which are named as peripheral,  central  zone 

and a periurethral region. These components are ontologically, 

morphologically and functionally different. 70% of prostate gland is 

comprised by Peripheral zone which produce and secrete citrate in 

excessive quantity. This distinctive characteristic of production of 

citrate and its secretion belongs to very specialized epithelial cells of the 

prostate, found in peripheral zone of prostate. These cells are glandular 

and these are secretory in nature. Development of malignancy begins 

in this peripheral zone of prostate gland. Mainly 70%-80% of Prostate 

cancer originates from the proximal region. Pca is one of most frequent 

cancer found within man especially in developed countries. Which 

cause an economic burden in a population along with morbidity and 

mortality [1,2]. It is the 5th cause of cancer related deaths in males’ 

worldwide. More than 90% of cases are found in males having age 

more than 50. In India, prostate cancer cases are found mainly at the 

age of 65. Like age, race is also the cause for example African American 

population have more cases of prostate cancer in comparison to white 

American population. Prostate is among the top ten site for cancers in 

India. In India between the year of 2010 and 2015 approximate 27000 

case of prostate cancer found with a survival rate of 64%. In its initial 

stage, this type of cancer grows slowly and remains bound to prostate 

gland. But sometimes it may spread to other body parts and may need 

surgical removal. Symptoms of Pca in severe conditions may include 

difficulty in urination, urine having blood, pelvis pain etc. At later 

stage RBC level becomes low so the patient may feel tired. However, 

exact cause of prostate cancer is not known. Most Primary common 

factors include Diet, age, Phylogenetic relationship and race. It is easy 

to get treated when detected at early stage. Due to increase in study of 

cancer metabolomics, various efforts has been made to find biomarkers 

to diagnose prostate cancer and efforts has been also made to analyze 

cellular metabolism to easy and early diagnosis and treatment of Pca. 

PSA (Prostate Specific Antigen) testing is one such method to detect 

Pca. PSA secretion is found increased in mostly men having prostate 

cancer so this is a widely used biomarker. [3]. PSA is secreted outside 

the body as a part of semen [4]. In normal conditions PSA is secreted 

in low amount in blood but in prostate cancer, PSA is secreted in high 

amount and thus increase in serum PSA represent abnormalities. 

Presently, PSA testing is used as early screening method to ascertain 

probability and gradual phenotype of Pca. PSA testing may lead to 

aggressive overtreatment in some patients who may have been treated 

sufficiently with active surveillance. Understanding the role of Zinc in 

prostate metabolism, it may be possible to diagnose prostate cancer 

easily [5]. Beside metabolic alterations, biomarkers can be proved very 

important in early and accurate detection of Pca. So, in this paper we 

will discuss about current stage of knowledge regarding role of zinc in 

Pca metabolism, role of biomarkers in Pca Detection and their future 

prospective. 

Role of Zinc in Prostate Cancer Metabolism 

Zinc is responsible for growth, reproductive and functional 

activities of prostate cells and nearly all mammalian cells. Prostate 

cells have uncommon feature of accumulation of Zinc in very high 

amount [6]. Prostate zinc amount is nearly 2-5 times than amount of 

zinc in other organs. Also Subcellular distribution of zinc in prostate  

is also not equal as shown in Tables  1 and 2 [7]. It  is clear from  

(Table 2) that mitochondrial Distribution of Zinc is high. Also the 

amount of Zn in mitochondria of prostate is higher than non-prostate 

cells mitochondria. Various reports shows that level of Zinc is remarkably 

low in prostate cancer in comparison to normal and BPH conditions   

in prostate. According to Dhar et al. [7] Zinc in normal prostate is   

540 µg/g dry wt. and in prostate cancer level of zinc remains 168 µg/g 

dry wt. Zinc accumulation in prostate is a feature of epithelial cells of 

prostate which results in citrate production. Zinc accumulation in these 
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Abstract 

Prostate gland is a complex organ found in men, having different components which are named as peripheral, 

central zone and a periurethral region. Biomarkers development for screening and detection of prostate cancer 

proved crucial in its easy and early management. Mitochondrial Zinc plays a crucial role in progression of prostate 

cancer. Peripheral zone of prostate gland has uncommon feature of zinc accumulation which result in collection 

and secretion of high level of citrate along with components of semen. High amount of zinc inhibit the action of m-

aconitase which in turn inhibits citrate oxidation. This review describes the metabolic zinc relationships found in 

normal and malignant prostate. In this review paper, we will also review the current knowledge on prostate cancer 

biomarkers such as PSA, PCA3, TMPRSS2-ERG, α-Methylacyl–coenzyme a racemase. Validation of existing 

biomarkers is essential and future research should focus in validation of existing biomarkers along with discovery of 

new biomarkers 
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prostate benign epithelial cells results due to increased number of zinc 

transporter ZIP1 in prostate. Various research’s performed on kreb 

cycle pathway has proved that activity of m-aconitase can be inhibited 

by high concentration of Zinc [8]. M-aconitase enzyme is mainly 

responsible for the oxidation of citrate in citrate oxidation or kreb cycle 

pathway. As we know, cells depends on oxidation of citrate which is a 

very important step in kreb cycle for the progress of aerobic respiration 

[9]. High amount of ATP, is produced by production and oxidation of 

citrate in kreb cycle which is followed by coupled phosphorylation. 

Various other pathways for biosynthesis of amino acid metabolism and 

for their degradation, are produced by the kreb cycle and recycling of 

their intermediates. So, Production and oxidation of citrate with the 

 
 

Zinc level µg/g dry wt. 

Whole gland 150 

Lateral lobe 211 

Dorsal lobe 127 

Anterior lobe 84 

Inner lobe 87 

Prostatic fluid 500 

Blood plasma 1-2 

Other organs 20-50 

Table 1: Zinc level in prostate, blood plasma and other organs. 

 
Subcellular distribution of zinc mg/g dry wt. 

Total 540 

Nuclear 200 

Mitochondrial 152 

Micro some 92 

Supernatant 64 

Table 2: Subcellular distribution of zinc in human prostate. 
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help of functional Krebs cycle is mandatory for the normal functioning 

of aerobic mammalian cells. But prostate epithelial cells produce citrate 

and they do not oxidize the citrate [10] and secrete citrate outside    

the body as a constituent of semen. In this epithelial cell of prostate, 

cancer begins [11]. Since citrate is produced and not oxidized in normal 

prostate cells so these cells of prostate must take on any other metabolic 

pathways and stop other activities which are not essential to save energy 

for survival and for their unique functions. Citrate producing prostate 

cells reportedly exhibit a high aerobic glycolysis [12-14], this results in a 

costly pathway of metabolism to produce energy when citrate oxidation 

is absent. Under normal conditions, benign prostate cells accumulate 

Zn and produces citrate but prostate cancer cells do not accumulate Zn 

and oxidation of citrate takes place by kreb cycle as shown in Figure 1. 

Besides this, prostate tumor cells behave differently from other types 

of tumors. Many types of cancer cell depend on glycolysis to fulfill their 

energy requirement known as Warburg phenomenon given by Otto 

Warburg [15]. According to Warburg increase in glucose utilization by 

Glycolysis is due to inherent defect in oxidative phosphorylation, which 

is the cause of cancer. Researchers found that cancer cells do not exhibit 

inherent defect in oxidative phosphorylation [16] but the observation 

of Warburg that cancer cells exhibit increase in glucose utilization via 

increase in glycolysis process proved true for most of the malignant 

cancers [17-19]. The increase in glucose utilization could be detected 

by PET which monitors glucose analogs (F18-FDG) as an indicator of 

malignancy in the cells [20]. Because of different phenotypes of Prostate 

cancer cells, these cells do not obey Warburg effect. These cells use 

lipids and some other molecules which are energy producing molecules 

for energy requirement and their proliferation and show high glucose 

uptake sometimes in later stages of Pca [21,22]. So, it is found that 

prostate cancer cells do not obey Warburg effect because increase in 

uptake of glucose is not found in these tumor cells [23]. So, FDG PET 

scans cannot detect Prostate cancers. From various studies it is found 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Kreb cycle in prostate cancer: Low Zn concentration cannot inhibit the activity of m-aconitase and citrate oxidation take place. 
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that the level of m-aconitase is same in these citrate producing cells  

as compared to citrate oxidizing cells [24,25]. So, it conclude that the 

low m-aconitase activity was not due to low level of enzyme and it was 

due to unique intramitochondrial conditions which inhibited enzyme 

activity. Liu et al. [26] provided the important information that zinc 

levels in mitochondria of prostate cells were uniquely in higher amount 

than non-prostate cells. Various studies shows that when amount of 

zinc becomes low in prostate then m-aconitase is not inhibited and this 

results in oxidation of citrate. However, it is unlikely that the decrease 

in citrate in prostate malignancy is solely due to its oxidation. It  is  

not amazing that metabolism of tumor cell involves a curtailed Krebs 

cycle which have low amount of citrate oxidation. Actually the tumor 

cells in prostate are also involved in citrate production but they do not 

accumulate the citrate as like normal prostate cells. Instead, the citrate 

produced by tumor cells is exported from mitochondria to cytosol   

via a shuttle such as the citrate: malate shuttle where it is converted to 

acetyl CoA for lipogenesis. Increase in lipogenesis is very essential for 

proliferation of tumor cell and their growth; and essential precursor of 

lipogenesis is citrate. Since this process is also essential for the growth 

and development of malignant prostate cells, a significant proportion 

of synthesized citrate must  be  utilized  for  lipogenesis  in  addition 

to being oxidized. This is an essential area for further investigation 

regarding the involvement of citrate-related intermediary metabolism 

and mitochondrial function in prostate malignancy. The exact nature 

of bioenergetics in early Pca cells is still being worked out, and work is 

being done on specific pathways as depicted in Figure 2. 

As we discussed that PSA testing is broadly used to diagnose 

Prostate Cancer. However PSA testing is not specific in nature because 

BPH is present more than 50% in men having more than age of 50 years 

[27,28]. So it is not very specific and may give false result. Beside this 

about 15 percent of men found with Pca having PSA at very low level 

Page 3 of 8 

 
(<4.0 ng/ml) and about 15% show advanced Gleason Score [29,30]. The 

overview of prostate cancer: risk factor, sign, symptoms, prognostic and 

diagnostic biomarker, diagnosis and treatment as shown in Figure 3. 

So in keeping view of certain limitations of PSA testing other type of 

biomarkers is being used to diagnose of prostate cancer so some of them 

are:-Extracranial locations of hemangiopericytoma were excluded. 

PCA3 

PCA3 formerly known as DD3 gene is highly overexpressed in 

prostate tumor [31,32]. PCA3 is a prominent biomarker used for testing 

of prostate cancer. Main importance of this is this test is not based on 

PSA. PCA 3 Stands for Prostate cancer antigen 3. Based on several 

studies, it is confirmed that malignant prostatic tissue have higher 

PCA3 mRNA as compared to non-malignant tissue [33-37]. Because 

of high sensitivity and specificity its use increased as a noninvasive 

biomarker. PCA 3 can be detected from cells found in urine of prostate 

cancer patients. Many iterations of PCA3 urine tests has been emerged 

[38] and presently, transcriptional amplification, a clinical grade assay 

based approach is used. An approach which combine reports from both 

PSA and PCA 3 can be used to detect prostate cancer. 

TMPRSS2-ERG 

Studies confirmed that high number of Pca express gene fusions in 

this gene fusion 5’ region of TMPRSS2 gene is fused with ERG gene. 

TMPRSS2 gene is regulated by androgen whereas ERG is a member 

of ETS family transcription factor. These are prostate cancer specific 

fusions and can be detected in precursor lesions. TMPRSS2-ERG RNA 

is investigated in prostate cancer patient urine [39,40]. Various studies 

shows that this is found only in about 50% prostate cancer patients; so it 

should be used with other biomarkers like PCA3. A study on PCA3 and 

TMPRSS-ERG jointly in urine is performed for diagnosis of Pca relative 

to PSA. Some reports say that TMPRSS2-ERG fusion can be used as 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Lipid metabolism in prostate cancer. 
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biomarker for detection of Pca itself when it is founded in tissues. There 

is a relationship among TMPRSS2-ERG and aggressive Pca [41,42]. But 

some others reports not found these type of relations [43,44]. Beside the 

possible advantage of TMPRSS2-ERG and PCA3, these are currently 

used complementary to PSA and researches are being performed to 

check the result of these tests in the absence of PSA. 

α-Methylacyl-Coenzyme A Racemase 

Enzyme AMACR is founded by RNA expression profiling and 

AMACR can be used as a diagnostic biomarker for detection of Pca 

due to high level of sensitivities (approx. 90%) [45]. Low expression of 

AMACR gene is related with metastasis. Low expression of AMACR 

gene is also related with biochemical recurrence of Pca [46]. AMACR 

is not specific to Pca because AMACR can also be detected in nodular 

hyperplasia, adenosis and atrophy. It is not suitable for noninvasive 

detection in urine [47,48]. 

Future Prospective 

Zinc-citrate relationship gives an opportunity to develop new 

approaches to the treatment of Pca. Consequently, we would propose 

that citrate oxidation inhibition would result in arrest or destroy 

malignant prostate cells and small adverse effects on nonmalignant 

prostate epithelial cells. If high prostate zinc levels can be restored in 

malignant cells of prostate, then citrate oxidation will be inhibited due 

to m-aconitase activity inhibition, which could stop the beginning     

of malignancy and further development. As already discussed, that 

unavailability of Zinc is not the cause of low amount of Zinc in Pca tissue. 

Efforts have to be made to increase uptake of Zinc in mitochondria   

of malignant prostate tissue. An additional agent which will increase 

Zinc uptake in prostate cells might be essential. Both testosterone   

and prolactin increase zinc accumulation in lateral prostate cells of 

rat, which is homologous to human lateral prostate which is primary 

origin of malignancy. Consequently, malignant prostate cells might 

exhibit the hormonal responses described for L-type cells. In support 

of this, as described above, we have demonstrated that prolactin 

treatment markedly increases zinc accumulation in LNCaP cells. These 

relationships bring us to the proposal that the administration of an 

agent to increase the cellular uptake of zinc, such as the elevation of 

circulating levels of prolactin coupled with an increased dietary intake 

of zinc, might increase the accumulation of zinc in malignant prostate 

cells and arrest malignancy. Because the prostate gland accumulates 

the high amount of circulating zinc and prolactin effect is specific   

for cells of prostate, there should be minimum effects elsewhere in  

the body. In addition, prolactin might inhibit the synthesis and level  

of m-aconitase, as it does in rat lateral prostate cells which would 

further decrease m-aconitase activity. So we need to find a method to 

increase the circulating level of prolactin because an injectable form 

of prolactin for human use is not available till now. An alternative but 

less desirable approach would be to enhance the pituitary release of 

prolactin by agents such as estrogen or perphenazine [49]. Provided 

that such agents do not have direct effects on inhibiting zinc uptake by 

the malignant cells and are not contraindicated by other adverse effects. 

This approach is supported by some preliminary studies in which we 

observed that the treatment of human Pca cell lines (LNCaP and PC-3 

cells) with zinc resulted in a dose-response inhibition of proliferation of 

both cell lines. When coupled with our reports that LNCaP and PC-3 

cells remain responsive to prolactin, these preliminary studies provide 

important support for this provocative proposal for the therapeutic use 

of zinc coupled with prolactin treatment. In addition to Zinc-citrate 

 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 

Figure 3: Overview of prostate cancer showing risk factor, sign and symptoms, prognostic and diagnostic biomarker, diagnosis and treatment. 
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relationship there are needs to use biomarkers other than PSA to easy 

and early detection of Pca. Biomarkers like TMPRSS2-ERG, PCA3 and 

exosomes can prove very important for early and easy detection due to 

their specificity and sensitivity. Researches should be done in this lacked 

but very important area. While this presentation is highly speculative, 

it provides a rational basis for various latest perspective to control and 

elimination of Pca. Hopefully this review will serve to expand interest 

of the basic and clinical scientific community in addressing these 

important areas of research. 
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