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Introduction
Some clinicians in rehabilitation encourage patients to become 

consciously aware of body movement. We have recently provided evi-
dence that the intervention involving self-monitoring joint movement 
at the ankle and wrist is likely to be beneficial to improve the stability of 
unipedal posture as measured immediately after intervention [1]. Dur-
ing the intervention session (a self-monitoring intervention), partici-
pants sat in a chair while blindfolded and moved either their ankle, i.e., 
the joint which is directly involved in upright postural control [2-5], or 
their wrist, i.e., the joint which is not likely to be essential for upright 
postural control. They were asked to concentrate on the position of the 
limb and try to reproduce the target joint angle as accurately as pos-
sible. The results showed that, for unipedal standing, postural stability 
was significantly higher after the self-monitoring intervention than af-
ter the control intervention, during which their self-monitoring of the 
movement was disrupted with a concurrent arithmetic task. Interest-
ingly, self-monitoring of both the movement of ankle and that of the 
wrist was effective.

In the present study, two experiments were conducted to further 
the understanding of the beneficial effects of self-monitoring the body. 
The purpose of the first experiment was to exclude the possibility that 
the beneficial effects of the self-monitoring intervention in Yasuda et al. 
[1] were simply the result of performing more accurate movement un-
der the self-monitoring intervention than under the control interven-
tion. The measurement of the accuracy in reproducing the target angle 
either by the ankle or by the wrist showed that the reproduction error 
was significantly higher under the control intervention due to concur-
rently performing the arithmetic task. It is therefore, possible that the 
beneficial effects of the self-monitoring intervention may have resulted 
simply from the beneficial effects of accurate movement but not from 

the activity of self-monitoring. To exclude this possibility, a new in-
tervention condition called "imagery" intervention was introduced in 
Experiment 1. During the imagery intervention, participants imagined, 
but did not actually reproduce, a target angle either with the ankle or 
the wrist. We hypothesized that, if the activity of self-monitoring itself 
was beneficial, then upright posture should become more stable when 
measured immediately after the imagery intervention.

The purpose of the second experiment was to address the meaning 
of the results in Yasuda et al. [1], in which the beneficial effects of self-
monitoring were evident for unipedal standing when both the move-
ment of the ankle and that of the wrist were monitored. There are at 
least two possible explanations for these findings. First, the beneficial 
effects of self-monitoring were likely to be independent of the body 
part used.

If this explanation were the case, then the beneficial effects of self-
monitoring would be observed with any part of the body being self-
monitored. Secondly, the wrist joint had significant contributions to 
maintaining postural stability. To determine which explanations were 
more plausible, the shoulder joint was selected for self-monitoring in 
Experiment 2. Compared to the contribution of the movement of the 
ankle joints, the contribution of the movement of the shoulder joint to 
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control the upright postural stability is not high. Selecting the shoulder 
joint was, therefore, suitable to test the validity of the two explanations. 

Experiment 1
Method

Participants: Sixteen young adults (8 males and 8 females, ages: 
25.4 ± 5.6 years) participated. The mean bodyweight of the participants 
was 54.76 ± 8.98 kg. Four of them engaged regularly in sports and 
physical activities (such as cycling, short-distance running, tennis, and 
walking). All participants provided written informed consent prior to 
their participation.

Inclusion criteria were (a) no sensory or motor impairments that 
could have influenced their balance, (b) ability to maintain balance 
with unipedal standing for more than 30 sec, and (c) scoring of the 
Movement Imagery Questionnaire-Revised (MIQ-R) [6] exceeding 
our criteria. For the scoring of the MIQ-R, the participants were first 
required to execute four purposive movements, immediately followed 
by the motor imagery of the same movements using the first-person 
perspective (i.e., as if they were feeling themselves perform the move-
ments from within). The participants then rated their capacity to elicit 
mental images of the action on different seven-point scales (i.e., high 
imagery, 7; low imagery, 1). An individual who scored more than five 
points for an average of four imagined movements was regarded to be 
suitable for this experiment. 

Apparatus: An electronic goniometer (Flexible 2D goniometry, 
Biodex, USA) was used to measure the joint angle during the inter-
vention sessions. Another goniometer (Standard Goniometer, Medical 
Arts Press, USA) was also used for the real-time sampling of the joint 
angle during practice trials preceding the intervention. A metronome 
(KDM-2, KORG, Japan) was used to maintain the movement speed 
during the practice trials. Force plates (type9281B, Kistler Instru-
menteAG, Winterthur, Switzerland) were used to determine the center 
of foot pressure (COP) during unipedal bipedal standings.

Procedure

Procedure and interventions: The Tokyo Metropolitan Univer-
sity’s ethics committee for human research approved the procedures 
employed in the study. The entire procedure (Figure 1) was carried out 
in a postural control study room. 

At the beginning of the experiment, a baseline measurement (“pre-
test”) of postural sway under both unipedal stance with the non-dom-
inant leg (left for all participants) and bipedal stance was conducted as 
a pre-test. The order of the stance selected for initiating this measure-
ment was counterbalanced among the participants. For measurement 
under each stance, the participants stood barefoot on a single-force 
platform with their eyes open while looking at a fixed eye-level target 
at a distance of approximately 2 m. The participants intended to mini-
mize their postural sway. Each stance consisted of three 30-sec trials 
with a 10-sec rest between trials.

Two minutes after the end of the pre-test of the postural sway, the 
participants moved onto a preceding practice session for the interven-
tions. First, the participants were engaged in practice for a joint-angle 
reproduction task, in which they tried to reproduce a predefined tar-
get angle with a joint movement as precisely as possible. For this task 
and during this session, the participants sat while blindfolded. For re-
producing the target angle, the participants moved either their ankle 
or wrist with the experimenter’s assistance until it reached the target 
angle. The participants were asked to hold the target position for 3 sec 

to remember the target angle. Holding the position for three seconds 
was considered to be long enough to identify the position [7]. They 
repeated this practice five times. Once aware of the target angle, they 
moved to the next repetition to maintain the speed of the joint move-
ment. For this practice, a metronome was used to maintain the joint 
movement speed. The participants were required to move the ankle or 
wrist joints from the start position to the target angle for 2 seconds and 
then moved back toward the start position for 2 seconds. No assistance 
from the experimenter was provided for this practice. The order of the 
joint selected for initiating this practice was counterbalanced among 
the participants.

When participants performed an imagery intervention, there was 
an additional preceding session for creating a clear image of move-
ment. In this session, the participants were asked to imagine the joint 
reproducing task repeated three times. Imagining the joint movement 
three times was considered to be sufficient to familiarize the participant 
with the simple motor imagery task [8,9]. All participants reported that 
they were able imagine the required movement after completing this 
preceding session. 

After the practice session, each participant was subjected to 2 
(self-monitoring, arithmetic) ×2 (movement, imagery/no-movement) 
interventions for the ankle and wrist. That is, each of the four interven-
tions was (a) self-monitoring actual movement (referred to as “move + 
monitoring” condition), (b) self-monitoring the imagined movement 
(“imagery”), (c) actual movement without self-monitoring (“move + 
arithmetic”) and (d) performing an arithmetic task without movement 
(“arithmetic”). 

During each intervention, the participants were sitting blindfolded. 

 

Baseline (Pre-test) n=16 
(Balance Testing) 

Preceding Practice・Intervention n=16 

Preceding Practice 

Practice for keeping the speed of joints movement with metronome 

Practice for reproducing target angle with the experimenter’s assistance 

Practice for the motor imagery task 

Intervention 

(a) 

“move + 
monitoring”

(c) 

“move + 
arithmetic”

(d) 

“arithmetic”
(b) 

“imagery”

Post-test n=16 
(Balance testing) 

Analyzed (3way ANOVA)     n=16 
2 (ankle・wrist)×2 (self-monitoring・control) ×2 

(movement・no movement) 

Figure 1: Participants’ flow diagram in Experiment 1.
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control, a statistical test was separately conducted for the bipedal and 
unipedal standing task. A three-way (self-monitoring, movement, and 
body part) ANOVA with repeated measures on both factors was per-
formed on each dependent variable with a 0.05 level of significance. A 
post-hoc comparison was performed to determine which comparisons 
were different. A paired t-test was used to compare the reproduction 
error values for each joint between the self-monitoring and control 
conditions. The level of significance was set at p < 0.05.

Results and Discussion
The means and standard deviations of the difference between the 

measurements at the pre-test and those at the post-test are shown in 
Table 1. For unipedal standing, the main effect of the self-monitoring 
was significant on the mean velocity of sway (F (1,120) =9.18, p < 0.01). 
A post-hoc test showed that the velocity of sway was slower under the 
move + monitoring condition and the imagery condition than under 
the move + arithmetic condition and the arithmetic condition (p < 
0.01). No significant interaction was found between self-monitoring 
and body parts, which indicated that the beneficial effect did not de-
pend on the body parts used for the intervention. No other main effects 
and interactions were significant for any of the measurements. For bi-
pedal standing, the main effect of the self-monitoring was significant 
on the mean velocity of sway (F (1,120) =5.90, p < 0.05) and the mean 
velocity of sway in the AP direction (F (1,120) = 4.46, p < 0.05). A post-
hoc test showed that the velocity of sway and the mean velocity of sway 
in the AP direction were higher under the move + monitoring condi-
tion and the imagery condition than under the move + arithmetic con-
dition and the arithmetic condition (p < 0.05). No other main effects 
and interactions were significant for any of the measurements.

The joint-angle reproduction errors (JRE) and imagination/execu-
tion (I/E) time ratio are shown in (Table 2a and Table 2b) respectively. 
A paired t-test showed that, for the ankle and wrist joints, the JRE was 
significantly smaller under the self-monitoring condition than under 

For the move + monitoring condition, the participants were asked to 
concentrate on the position of the limb and try to reproduce the target 
joint angle (20 degrees) by dorsiflexion of the ankle or extension of the 
wrist and to move the joint back toward the baseline angle (0 degree) 
20 times as accurately as possible. The order of the joint selected for 
the reproduction task was counterbalanced among the participants. 
For the imagery condition, the participants were asked to imagine the 
joint-angle reproducing task 20 times. For the move + arithmetic con-
dition, the participants performed the joint-anglereproduction task 20 
times while continuously subtracting 3 from the initial number 100. 
The subtracting task was intended to prevent the participants from self-
monitoring the movement [10]. For the arithmetic condition, the par-
ticipants performed only the arithmetic subtraction task.

Ten seconds after each intervention session, the participants con-
ducted the measurement of postural sway under bipedal stance and 
unipedal stance with the non-dominant, left leg as a post-test. All the 
protocol for this post-test was identical to that for the pre-test.

Outcome measurements: Postural stability was expressed as the 
mean velocity of sway (total and in the AP, ML direction) and rectan-
gular area calculated using COP data. The COP data, collected at the 
20-Hz sampling frequency, was obtained using a Kistler force plate 
(type 9281B, Kistler InstrumenteAG, Winterthur, Switzerland). The 
data were low-pass-filtered at 6 Hz, since most of the power of the sig-
nal was <2 Hz [11]. Each mean velocity of postural sway and the rect-
angular area were calculated using the following formula:

Mean velocity = 
Σ − −n-1 2

i=1 i+1 i i+1 i(AX AX )+(AY AY )
S

Mean velocity in the AP direction = 
Σ −n-1 2

i=1 i+1 i(AX AX )
S

Mean velocity in the ML direction= 
Σ −n-1 2

i=1 i+1 i(AY AY )
S

Rectangular area = ⋅max min max min(X - X ) (Y - Y )

To examine the amount of change in the postural sway from the 
pre-test to the post-test, the values of each measurement at the post-test 
were subtracted from the values at the pre-test (i.e., a negative value 
means that the posture became stable at the post-test). These subtracted 
values were used as the postural stability measures.

To examine the accuracy of movement performed during the in-
terventions, the accuracy of reproducing the target angle (referred to 
as a joint-angle reproduction error; JRE) was measured for the move 
+ monitoring and move + arithmetic conditions. The mean absolute 
difference between the reproduced angle and the target angle was cal-
culated with the data of a task reproduced 20 times. 

For the imagery condition, to qualitatively evaluate whether par-
ticipants imagined the required movements accurately in terms of tem-
poral congruence, the ratio of movement times in physically executed 
movements (E) and imagined movements (I) (referred to as the I/E 
time ratio) was calculated. The duration of physically executed move-
ments (E) was measured in the “move + monitoring” condition with a 
digital stopwatch. For recording the duration of imagined movement 
(I) in the “imagery” condition, the initial cue was given by the examiner 
and the end of the imagination was indicated vocally by the partici-
pants. The imagined movements were considered to be accurate when 
the I/E time ratio was from 0.8 to 1.2 [12,13].

Statistical analysis: For each dependent measurement on postural 

Move + Monitoring Imagery Move + Arithmetic Arithmetic
Unipedal Standing (n = 18)
Ankle
MV -1.10 ± 0.35 -0.15 ± 0.40 -0.04 ± 0.26 0.04 ± 0.47
MV (AP) 0.34 ± 0.54 0.40 ± 0.99 -0.03 ± 1.06 0.45 ± 0.86
MV (ML) -0.24 ± 0.73 0.43 ± 0.46 -0.06 ± 0.65 0.04 ± 0.92
REC -1.36 ± 3.93 -2.31 ± 3.86 -0.83 ± 4.50 0.61 ± 7.28
Wrist
MV -0.18 ± 0.23 -0.01 ± 0.22 0.19 ± 0.22 0.06 ± 0.27
MV (AP) 0.56 ± 0.75 -0.09 ± 1.06 0.03 ± 0.71 0.00 ± 0.95
MV (ML) 0.24 ± 0.67 0.26 ± 0.80 0.24 ± 0.57 0.19 ± 0.85
REC 0.82 ± 2.34 -1.30 ± 4.42 -1.40 ± 3.32 1.35 ± 4.76
Bipedal Standing (n=18)
Ankle
MV -0.02 ± 0.44 0.07 ± 0.36 -0.29 ± 0.26 -0.04 ± 0.48
MV (AP) -0.14 ± 0.34 -0.08 ± 0.41 -0.10 ± 0.29 -0.04 ± 0.29
MV (ML) 0.05 ± 0.35 0.11 ± 0.43 -0.05 ± 0.52 0.22 ± 0.34
REC 0.12 ± 1.67 1.39 ± 3.63 -0.13 ± 2.78 -0.01 ± 1.97
Wrist
MV 0.03 ± 0.41 0.07 ± 0.35 -0.12 ± 0.39 -0.09 ± 0.39
MV (AP) -0.21 ± 0.35 -0.05 ± 0.26 -0.18 ± 0.34 0.02 ± 0.29
MV (ML) 0.04 ± 0.52 0.11 ± 0.47 0.12 ± 0.49 0.00 ± 0.39
REC 2.72 ± 7.20 -0.67 ± 2.38 2.16 ± 6.02 1.66 ± 3.40

MV: Mean Velocity (cm/sec); REC: Rectangular Area (cm2)
A negative value means that the posture became stable at the post-test. 

Table 1: Differences in measurements between the pre-test and post-test in each 
measuremen tin Experiment 1 (Mean ± SD).
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the control condition (p < 0.01). All the I/E time ratios were within an 
acceptable limit (0.8-1.2) (Table 1 and Table 2).

The results showed that the beneficial effects of self-monitoring 
were evident for both the move + monitoring condition and the im-
agery condition. The values of the I/E time ratio ensured that, in the 
imagery intervention, the participants were able to imagine the joint 
movement accurately in a chronological sense. These results suggest 
that the beneficial effects would have resulted from the activity of self-
monitoring but not simply from accurate movement. 

The results replicated the findings of our previous study [1] that 
the immediate beneficial effects of the activity of self-monitoring were 
evident for unipedal standing but not for bipedal standing. In fact, the 
intervention of self-monitoring was rather detrimental on maintaining 
postural stability during bipedal standing. The results indicated that the 
beneficial effect of self-monitoring is beneficial only for a more chal-
lenging postural task. The results also replicated our previous findings 
that the beneficial effects of self-monitoring were evident when both 
the movement of the ankle and that of the wrist were monitored. Pos-
sible explanations are presented below.

Experiment 2
The results of experiment 1 replicated our previous findings that 

beneficial effects of self-monitoring were evident when both the move-
ment of the ankle and that of the wrist were monitored. To address 
possible explanations for the results, the shoulder joint was selected as 
a body part to be self-monitored. If the beneficial effects of self-moni-
toring were observed even after self-monitoring the movement of the 
shoulder, then the beneficial effects of self-monitoring were likely to be 
independent of the body part used. If no beneficial effects were found, 
then the wrist joint tactile and/or proprioceptive inputs regarding the 
hand location significantly contributed to maintaining the postural sta-
bility.

Methods, results, and discussion

Methods: Eighteen young adults (9 males and 9 females, ages: 24.7 
± 3.8 years) participated in this experiment. The mean bodyweight of 
participants was 53.59 ± 6.78 kg. The inclusion criteria were identical 
to those used in Experiment 1. Five participants regularly engaged in 
sports and physical activities (such as mountain climbing, cycling, ka-
rate, taekwondo, and walking). Each participant gave written informed 
consent prior to participation.

The procedure was generally identical to that used in Experiment 
1, except that three body parts (i.e., the ankle, wrist, and shoulder) were 
used. With regard to the activity of self-monitoring the shoulder joint, 

the participants were asked to reproduce a target angle (20 degrees) 
with abduction of the left shoulder and to move it back toward the 
baseline angle (0 degree) 20 times. During the MI condition, the partic-
ipants tried to imagine the same movements as accurately as possible.

Results and discussion: Regarding postural stability, the means 
and standard deviations of the difference between the measurements 
at the pre-test and post-test are shown in Table 3. Regarding unipedal 
standing, a three-way ANOVA showed that the main effect of self-
monitoring was significant on the mean velocity of sway (F (1,240) = 
9.57, p < 0.01). A post-hoc test showed that the velocity of sway was 
lower under the move + monitoring condition and the imagery condi-
tion than under the move + arithmetic condition and the arithmetic 
condition (p < 0.01). There was no significant interaction between self-
monitoring and body parts, which indicated that the beneficial effect 
did not depend on the body parts used for the intervention. Regarding 
bipedal standing, a three-way ANOVA showed that the main effect of 
self-monitoring was significant on the mean velocity of sway (F (1,240) 
=4.57, p < 0.05). A post-hoc test showed that the velocity of sway was 
higher under the move + monitoring condition and the imagery condi-
tion than under the move + arithmetic condition and the arithmetic 
condition (p < 0.05). No other main effects and interactions were sig-
nificant for any of the measurements.

**p<0.01 

Bipedal Standing (n = 18) Unipedal Standing (n = 18)
Move + Monitor Move + Arithmetic Move + Monitor Move + Arithmetic

Ankle 4.16 ± 1.28** 6.78 ± 1.63 3.87 ± 1.32** 6.94 ± 1.54
Wrist 3.22 ± 1.03** 5.64 ± 1.28 2.71 ± 0.71** 5.03 ± 1.71

A)

B)

Bipedal Standing (n = 16) Unipedal Standing (n = 16)
Ankle 1.05 ± 0.04 1.06 ± 0.04
Wrist 1.05 ± 0.04 1.04 ± 0.05

Move + Monitoring Imagery Move + Arithmetic Arithmetic
Unipedal Standing (n = 18)
Ankle
MV -0.06 ± 0.34 -0.13 ± 0.40 -0.03 ± 0.36 0.07 ± 0.45
MV (AP) -0.08 ± 0.71 -0.05 ± 0.60 -0.13 ± 0.70 0.06 ± 0.81
MV (ML) -0.13 ± 0.84 0.16 ± 1.02 -0.07 ± 0.92 -0.13 ± 0.83
REC -1.25 ± 3.07 -1.55 ± 3.23 -1.13 ± 4.11 -1.69 ± 5.87
Wrist
MV -0.15 ± 0.15 -0.08 ± 0.30 0.11 ± 0.25 -0.04 ± 0.27
MV (AP) -0.40 ± 0.62 0.14 ± 0.61 -0.24 ± 0.50 0.01 ± 0.54
MV (ML) 0.46 ± 0.77 0.03 ± 0.74 0.18 ± 0.83 -0.33 ± 0.72
REC 0.84 ± 2.39 -1.20 ± 3.81 -0.34 ± 2.41 -0.28 ± 3.22
Shoulder
Ankle
MV -0.15 ± 0.26 -0.01 ± 0.27 0.06 ± 0.19 0.00 ± 0.22
MV (AP) -0.18 ± 0.67 -0.37 ± 0.75 0.02 ± 0.73 0.08 ± 0.78
MV (ML) 0.37 ± 0.58 0.26 ± 0.68 0.14 ± 0.80 -0.05 ± 1.02
REC 1.31 ± 1.97 -1.46 ± 3.75 -0.60 ± 2.09 0.15 ± 4.02
Bipedal Standing (n=18)
Ankle
MV 0.01 ± 0.47 0.16 ± 0.44 -0.21 ± 0.30 0.01 ± 0.51
MV (AP) -0.04 ± 0.14 -0.01 ± 0.16 -0.05 ± 0.19 -0.08 ± 0.16
MV (ML) 0.10 ± 0.31 -0.01 ± 0.49 -0.02 ± 0.42 0.01 ± 0.54
REC 0.12 ± 1.56 0.82 ± 1.66 0.32 ± 2.28 0.08 ± 1.55
Wrist
MV -0.03 ± 0.43 -0.01 ± 0.36 -0.06 ± 0.41 -0.07 ± 0.42
MV (AP) -0.04 ± 0.17 0.00 ± 0.18 -0.03 ± 0.17 -0.02 ± 0.19
MV (ML) -0.04 ± 0.34 -0.03 ± 0.49 -0.01 ± 0.35 -0.18 ± 0.29
REC 0.57 ± 1.98 -0.46 ± 1.98 0.59 ± 1.89 1.50 ± 2.78
Shoulder
MV 0.04 ± 0.34 0.07 ± 0.28 -0.08 ± 0.33 -0.01 ± 0.33
MV (AP) -0.08 ± 0.24 -0.02 ± 0.16 -0.04 ± 0.16 0.04 ± 0.18
MV (ML) -0.10 ± 0.47 -0.07 ± 0.41 -0.08 ± 0.42 -0.02 ± 0.34
REC 0.72 ± 1.95 -0.14 ± 2.00 0.79 ± 1.94 1.18 ± 2.07

MV: Mean Velocity (cm/sec); REC: Rectangular Area (cm2)
A negative value means that the posture became stable at the post-test.

Table 3: Differences in measurements between the pre-test and post-test in each 
measurement in Experiment 2 (Mean ± SD).

Table 2: A) Average absolute joint reproduction error in Experiment 1(Mean ± SD). 
p values were derived from paired t-tests.

B) Average imagination/execution time ratio in Experiment 2(Mean ± SD).
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**p<0.01 

Bipedal Standing (n = 18) Unipedal Standing (n = 18)
Move + Monitor Move + Arithmetic Move + Monitor Move + Arithmetic

Ankle 5.36 ± 1.28** 6.57 ± 1.63 4.18 ± 1.32** 6.27 ± 1.54
Wrist 3.22 ± 1.03** 5.64 ± 1.28 2.65 ± 0.71** 5.64 ± 1.71
Shoulder 5.52 ± 1.39**  6.17 ± 1.83 5.02 ± 1.32** 6.51 ± 1.54

A)

B)

Bipedal Standing (n = 16) Unipedal Standing (n = 16)
Ankle 1.05 ± 0.04 1.06 ± 0.04
Wrist 1.05 ± 0.04 1.04 ± 0.05

The mean reproduction errors and imagination/execution (I/E) 
time ratio are shown in (Table 4a and Table 4b). A paired t-test showed 
that, for the ankle, wrist, and shoulder joints, the reproduction error 
was significantly smaller under the self-monitoring condition than the 
control condition. All the I/E time ratios were within an acceptable 
limit (0.8-1.2) (Table 3 and Table 4).

The results showed that, for unipedal standing, the beneficial effects 
of self-monitoring were evident even when themovement of the shoul-
der was monitored. This suggests that the beneficial effect appeared to 
be independent of the body parts used for the movement. It is likely 
that the central nervous system can use not only the tactile and/or pro-
prioceptive inputs from the lower limbs but also those from the whole 
body. The present results replicated the findings of Experiment 1 in 
that (a) the beneficial effects of self-monitoring were evident for both 
the move + monitoring condition and the imagery condition, and (b) 
the activity of self-monitoring was beneficial for unipedal standing but 
not for bipedal standing. These findings ensured the reliability of the 
findings. 

General Discussion
The results of experiment 1 showed that the beneficial effects of 

self-monitoring were evident both when involving actual movement 
condition and when involving motor imagery. The same result was rep-
licated in Experiment 2, showing the reliability of the findings. These 
findings suggest that the beneficial effects would have resulted from the 
activity of self-monitoring but not simply from accurate movement. 
The present results also showed that the beneficial effects of self-moni-
toring were evident not only when the movement of the ankle, i.e., the 
joint that is directly involved in upright postural control, was moni-
tored but also when the movements of the wrist and shoulder were 
monitored. This suggests that the beneficial effect appeared to be inde-
pendent of the body parts used for the movement. Notably, the activ-
ity of self-monitoring was beneficial for unipedal standing but not for 
bipedal standing. These findings seem to suggest that the intervention 
of self-monitoring may have been effective only for the performance of 
more challenging postural tasks. Such an explanation was consistent 
with a previous finding showing that tactile information is effective to 
modulate postural control under a more challenging postural task [14]. 
Furthermore, postural control for bipedal standing is a stable condition 
and familiar action pattern experienced in daily life [2,3]. Therefore, 
unlike postural control for unipedal standing, self-monitoring of body 
movements may promote conscious control of movements and result 
in interference with automatic motor control processes. In conclusion, 
the present study showed that self-monitoring has in itself some ben-

eficial effects for the improvement of postural stability when maintain-
ing the stability is challenging. This conclusion supports an intuitive 
understanding of the importance of self-monitoring when performing 
physical exercises [15-22].
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