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Introduction
Brain Computer interface (BCI) is a technology to provide device 

control using brain signals directely without the participation of the 
peripheral nervous system and muscles. It was first funded by the 
Defense Advanced esearch Projects Agency (DARPA) in 1970s [1] 
and has got great developments since 1990s [2-4]. Many signals can be 
used to build a BCI system, including electroencephalography (EEG), 
electrocorticography (ECoG), magnetoencephalography (MEG), 
functional magnetic resonance imaging (fMRI) and functional near 
infrared spectroscopy (fNIRS) [5]. At present, EEG is the most wildly 
used non invasive signal for its high temporal resolution, portability 
and low cost. fNIRS is another promising modality for BCI purpose. 
This technology can provide the metabolism information during the 
cognitive process, and can be used with EEG simultaneously to achieve 
higher classification accuracy for BCI systems [6].

fNIRS is used in BCI research since 2004 by Coyle [7], and 
BCI reseachers have focused on this modality increasingly in the 
following years [8-10]. fNIRS can obtain concentration changes of 
deoxyhemoglobin (Hb) and oxyhemoglobin (HbO) calculated by the 
modified Beer-Lamber Law from the detected otpical signals [11]. Both 
concentration signals and optical signals can be used as features in BCI 
research. Our previous research shows that concentration signals can 
get better results than optical signals [12]. Early researches often use 
the amplitude of concentration signals as features directly [7,13]. Cui 
et al. compares the classification accuracy of different feature spaces, 
including signal amplitude, signal history, history gradient and spatial 
pattern. Their research indicate that combining multi channel signal 
history can get the best results [14]. The slope of the concentration 
signal can also be used as the feature for classification and get desirable 
results [15]. Classification accuracy can be further improved by using 
both ‘filter’ and ‘wrapper’ feature selection methods [16]. Herff et al. 
take the mean hemodynamic concentration difference between task 
period and rest period as features, use Mutual Information based 
Best Individual Feature (MIBIF) to decrease feature space, getting a 

classification accuracy of 61% between three speaking modes using 
support vector machines (SVM) [17]. Power et al. take the slope of Hb 
and HbO concentration as features, and use sequential feed-forward 
feature selection algorithm to choose the optimal feature subset with 
the Fisher criterion, getting a classification accruracy of 71.1% between 
the Mental Arithmetic (MA) task and the No Control (NC) state using 
Linear Discriminant Analysis (LDA) [18].

In this paper, we apply motor imagery paradigm in the experiment. 
A new signal type of Difference between HbO and Hb (HbD) is 
proposed as a feature. The continous feature is discretized first, then the 
Mutual Information Based Feature Selection (MIFS) is used to get the 
optimal feature subset, and the Support Vector Machine (SVM) with 
linear kernal is used to classify the task of clench speed motor imagery 
from the task of clench force motor imagery on the same hand. The 
comparison of classification accuracy between signal types of Hb, HbO, 
HbT(total hemoglobin) and HbD shows that the best results relies on 
individuals. For some subjects HbD can get comparable results with 
HbO, and for some subjects HbD can get better results than all the 
other three feature types.

Experiment Design
Paradigm

In our experiment, the motor imagery of clench force and clench 
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Abstract
In this paper, we present a signal discretization and feature selection method to improve classification accuracy 

for fNIRS based brain computer interface (BCI) system, which can classifiy right hand clench force motor imagery and 
clench speed motor imagery at an accuracy of 69%-81% through 5 fold cross validation in 6 subjects. Difference between 
oxyhemoglobin and deoxyhemoglobin (we abbreviate this difference as HbD) is proposed as a new feature type and 
shows outstanding performance in some subjects. Linear kernal support vector machine (SVM) classification between 
clench force motor imagery and clench speed motor imagery using four concentration feature types (oxyhemoglobin, 
deoxyhemoglobin, totalhemoglobin, and HbD) is implemented. Our results demonstrate that feature discretization using 
Chi2 algorighm and feature optimization using ‘MIFS’ (Mutual Information Feature Selection) criterion can improve the 
classification accuracy by more than 35%. Except total hemoglobin, all the other three feature types can be used as the 
optimum feature for different subjects. The results of this paper can also  be used in online BCI applications.
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speed of right hand is used as the paradigm. We measure each subject's 
Maximum clench Force (MF) using hand dynamometers, and told 
them to do real clench force practice at the level of 20%, 50% and 80% 
of MF. The clench speed task practice request the subject to clench 
their right hand at the frequency of 0.5Hz, 1Hz and 2Hz according 
to a metronome. We divide both task into three sub-types because 
we want to average the effect of different task parameters. During the 
experiment, the subjects are told to recall the feeling of doing real 
movement task. We adopt this motor parameters imagery paradigm 
based on two considerations: First, motor imagery is more natural for 
device control than paradigms using mental arithmetic and singing. 
Second, this paradigm can provide more direct control commands than 
paradigms that do not distinguish the hand motor imagery types, and 
such discrimination is especially important to improve the information 
transfer rate for BCI applications if both hands are used.

Six healthy subjects (three males and three females, averaged age 
26.8 years) participate in the experiment. All the subjects are right 
handed. Three of them are trained three times before the experiment 
(subject number 1, 2, and 6), while the other three subjects are not 
trained (subject number 3, 4, and 5). All of them give written informed 
consent to participate in the experiment, and the experiment is 
approved by the Ethnical Committee of the Shenyang Institute of 
Automation (SIA), Chinese Academy of Sciences (CAS).

A single trial of the experiment consists of four parts: the base line 
period, the cue period, the task period and the rest period, as shown 
in Figure 1. The baseline period is used to produce a baseline for task 
period. The cue period is used to inform the motor imagery type to 
implememt in the following task period that lasts 10 seconds. The rest 
peroid is used to make the hemodynamic level return to a normal level. 
The duration of a single trial in fNIRS experiment is much longer than 
EEG experiment due to the intrinsic time lag of hemodynamic signals 
[11]. Each subject take part in 3 sessions, and each session contains 60 
trials (30 trials of clench force motor imagery and 30 trials of clench 
speed motor imagery).

Data aquisition

We acquire the hemodynamic signals using ETG-4000 produced 
by the Hitachi Co., Ltd. This device is a continuous wave equipment, 

and it has two types of optode. One type is the illuminator and the 
other type is the detector, as is shown in Figure 2. The middle point 
between those two optodes is the meaurement channel. The illuminator 
optode can emit near infrared light at wavelength of 695 nm and 830 
nm simultaneously. The detector receives the output light that has been 
modulated by the oxyhemoglobin and deoxyhemoglobin concentration 
changes, and transmits it to an Avalanche Photo Diode (APD) that 
converts optical changes to voltage changes. The voltage changes is 
digitalized by the analog to digital converter (ADC) and then used to 
calculate the concentraion changes by the modified Beer-Lamber Law 
as shown in Eq. (1), where 

1 2/ , /λ λε Hb HbO  is the extinction coefficient of 
Hb/HbO under the corresponding wavelength, 

1 2/ 1 2( / )λ λI t t  is the light 
intensity, and DPF is the ratio of optical photons’ actual path length 
and the illuminator detector distance [19]. To cover the sensorimotor 
area at both hemisphere, we choose two 3×3 optode layout helmets, 
which contain 24 channels altogether. The channel 7 and channel 21 are 
adjusted to directly above the C4 and C3 position in the standard 10-20 
international system used for EEG recordings. The sampling frequency 
is 10Hz, which is sufficient enough for fNIRS based BCI system.

In our experiment, the EEG and fNIRS data are acquired 
simultaneously because we want to research the multi modality feature 
for BCI application. However, in this paper, we only focus on the fNIRS 
signal, and the combined features will be studied in the future.

11

21

1 1 1

12
2 2

22

2

( )
( )

1
, ,

( )
, , ( )

log

log

λ

λ

λ

λ

λ λ λ

λ λ

λ

ε ε

ε ε

−

 
 
  ∆ 

∆ = =      ∆     
  
 

I t
I t

Hb HbOHb
I t

HbO Hb HbO I t

DPF dc
C

c

DPF d

              (1)

Data Processing Methods
Preprocessing

The original concentration data is linearly detrened first to remove 
low frequency drift due to optode movements, and then filtered by a 
Chebyshev II low pass IIR filter at a cutoff frequency of 0.1 Hz to remove 
high frequency artifacts such as heart rate and breathing rate. This is 

 
Figure 1: The configuration of a single trial.

Figure 2: The fNIRS’s measurement principle, the optodes layout and its photo during the experiment.
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reasonable because our previous research shows that the frequency 
component between 0.02 Hz and 0.08 Hz plays important role for 
data classification [20]. The time course average of the four different 
preprocessed fNIRS signals is shown in Figure 3. The data is then 
downsampled to 1 Hz to decrease feature space. The downsampling 
process loss no information on the low passed data according to the 
Shannon's sampling theorem.

Discretization

Discretization is the process of partitioning continous variables into 
categories. It is very useful for many machine learning (ML) algorithms 
to get better classification results [21]. Based on whether the class 
information is taken into account, discretization methods can classified 
into supervised methods and unsupervised methods. Generally, the 
supervised methods outperforms the unsupervised methods [22]. The 
equal width and equal frequency discretizaions are two representative 
algorithms of the unsupervised methods, but their performance is 
relatively poor. In this paper, we choose the Chi2 algorithm to discretize 
the continous concentration sigal. In Chi2 algorithm, the significance 
on relationship between the values of a feature and a class type is 
tested using the χ2 statistic as shown in Eq. (2), where k is the number 

of classes, Aij is the number of patterns in the ith interval of jth class, 
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Feature selection

Currently, there are three types of concentration signal used in 
fNIRS based BCI application: Hb, HbO and HbT. In this paper, we 
proposed a new concentration signal HbD, which refers to the difference 
between HbO and Hb concentration. HbO and Hb are typically strongly 
negatively correlated with each other under normal circumstances [24], 
and we propose that HbD may amplify the amplitude of concentration 
changes due to cognitive tasks.

The orignal feature space consists of 24 channels of the downsampled 
amplitude data within the task start point and 2s after the task end point, 
resulting in a feature set of 312 values. The 2s time lag is set to take into 
consideration of the intrinsic time lag of hemodynamic response. The 
four signal types (Hb, HbO, HbT, and HbD) are researched respectively.

The ‘wrapper’ methods and the ‘filter’ methods are two brodly 
grouped approaches in feature selection techniques [16]. The former 
method takes the training accuracy of a paticular classifier as the 
criterion when searching for the best feature subsets.This method can 
get better results, while the subsets are overly fit to the classifier used, 
and the computational cost is considerably expensive. To make the 
optimized subset suitable for more classification methods, we apply the 
‘filter’ method in our research.

Eight types of information based criteria, including ‘MIFS’, ‘mRMR’, 
‘CMIM’, ‘JMI’, ‘DISR’, ‘CIFE’, ‘ICAP’, and ‘CondRed’ [16], are tested 
using one subject’s data to choose the best criterion for our research. 
The ‘MIFS’ (Mutual Information Feature Selection) criterion is chooed 
in the following research because it’s performance is best in all the tested 
criteria. The details feature selection method using ‘MIFS’ criterion can 
be found in [25].

Classification

Support vector machine (SVM) is a widely used efficient method in 
machine learning research, especially for classification with small data 
set [26,27]. Unlike other classification method that use all the sample 
data to train the model, SVM only selects the samples (the support 
vectors) that can produce the largest margin between two classes. Also, 
SVM maps the input vectors into a high dimensional feature space using 
a kernal function, and the pproblems that can not linearly separable in 
low dimensional space becomes possible in high dimensional feature 
space. SVM can get better performance by solving the optimization 
problem in Eq. (3) [26].  
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Where xi is the training vevtors, ϕ() is the kernal function, w is the 
weight, b is the bias, ξ is the soft margin and C is a constant. The linear 
kernal ( , ) = T

i jK xi xj x x  is used in our reseach because it requires lesser 
parameters to optimize, and can achieve much higher classification 
results compared with other kernals when their parameters are not 
been optimized. The 5 fold cross validation is used to get the results 
more credible.

Results
To demonstrate the effectiveness of feature discretization and 

feature selection, we first compared classification accuracy of four 
different feature sets. The first feature set consists of the continuous 
data from the channel above C3. The second feature set consists of 
the discrete data from C3 channel. The third feature set consists of the 
discrete data from all the 24 channels, and the fourth feature set is the 
optimum subset chosen from the third feature set using the ‘MIFS’ 
cirterion. The comparison of these four different feature sets are shown 
in Figure 4 (left). The error rate of continuous C3 feature set decreases 
by 9%, 5%, 2%, and 6% when the data is discretized for signal type 
of Hb, HbO, HbT and HbD respectively, which implies that feature 
discretization can improve the classification accuracy. The error rate of 
the feature set containing discrete data from all the 24 channels reaches 

 
Figure 3: The time course average of the four different preprocessed fNIRS 
signals.

http://dx.doi.org/10.4172/1662-100X.1000119


Citation: Xu B, Fu Y, Shi G, Yin X, Wang Z, et al. (2014) Improving Classification by Feature Discretization and Optimization for fNIRS-based BCI. J 
Biomim Biomater Tissue Eng 19: 119. doi: 10.4172/1662-100X.1000119

Volume 19 • Issue 1 • 1000119
J Biomim Biomater Tissue Eng
ISSN: 1662-100X Biochem, an open access journal 

Page 4 of 5

difference is not significant. Significant difference is observed olny in 3 
subjects: for subject 2, HbD feature type has a lower error rate than Hb 
and HbT feature type at a siginificant level of 0.01 and 0.05; for subject 
3, Hb feature has a lower error rate than HbO feature at a significant 
level of 0.05; for subject 6, HbO feature type has a lower error rate than 
HbT feature type at a significant level of 0.05. HbT feature type shows 
no significant lower error rate than other three feature type in all the 
subjects.

The trained subjects has lower mean error rate than no trained 
subjects, as is shown in Figure 5 (right). Though the difference level for 

nearly 60%, and can be decreased to 25% when the optimum subset 
is chosen. The relationship between error rate and the feature number 
chosen by the ‘MIFS’ feature selection algorithm is shown in Figure 4 
(right). The optimum feature number of most of the subjects is between 
20 to 50.

The classification error rate using the optimized feature subset of 
four types of concentraion signal is shown in Table 1 and Figure 5 (left). 
Similar to EEG, fNIRS signal’s characteristic varies between subjects. 
For subject 1, the mean error rate of Hb feature type for three sessons 
shows the lowest error rate than other three feature types, but the 

 
Figure 4: The error rate comparison of four different feature sets (left), and the error rate curve corresponding to increased discrete feature 
number chosen using ‘MIFS’ criterion (right). 

 
Figure 5: The error rate comparison of all the subjects using the optimized featue (left), and the comparison of training effets on classification 
results (right).

Signal type ---------- Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6

Hb

Session 1 0.25 0.28 0.27 0.25 0.27 0.24
Session 2 0.15 0.27 0.20 0.28 0.25 0.20
Session 3 0.17 0.27 0.27 0.27 0.25 0.25
Mean ± std 0.19 ± 0.05 0.27 ± 0.01 0.24 ± 0.04 0.27 ± 0.02 0.26 ± 0.01 0.23 ± 0.03

HbO

Session 1 0.30 0.17 0.28 0.32 0.25 0.15
Session 2 0.17 0.22 0.34 0.30 0.32 0.23
Session 3 0.22 0.23 0.30 0.22 0.23 0.20
Mean ± std 0.23 ± 0.07 0.21 ± 0.03 0.31 ± 0.03 0.28 ± 0.05 0.27 ± 0.04 0.19 ± 0.04

HbT

Session 1 0.17 0.20 0.30 0.23 0.32 0.27
Session 2 0.22 0.32 0.23 0.25 0.30 0.27
Session 3 0.27 0.25 0.27 0.27 0.28 0.38
Mean ± std 0.22 ± 0.05 0.26 ± 0.06 0.27 ± 0.03 0.25 ± 0.02 0.30 ± 0.02 0.31 ± 0.07

HbD

Session 1 0.23 0.13 0.35 0.32 0.27 0.19
Session 2 0.15 0.18 0.26 0.20 0.32 0.17
Session 3 0.25 0.20 0.30 0.28 0.18 0.25
Mean ± std 0.21 ± 0.05 0.17 ± 0.03 0.30 ± 0.04 0.27 ± 0.06 0.26 ± 0.07 0.20 ± 0.04

Table 1: The classification error rate using the optimized feature subset of four types of concentraion signal.
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responses during cognitive tasks using wavelet transforms and machine 
learning algorithms. Med Eng Phys 34: 1394-410.

10. Abibullaev B, An J, JI Moon (2011) Neural Network Classification of Brain 
Hemodynamic Responses from Four Mental Tasks. International Journal of 
Optomechatronics 5: 340-359.

11. Matthews F, Pearlmutter BA, Ward TE, Christopher S, Markham C (2008) 
Hemodynamics for brain computer interfaces. IEEE Signal Processing 
Magazine 25: 87-94.

12. Xu B, Fu Y, Shi G, Yin X, Miao L, et al. (2013) Comparison of optical and 
concentration feature used for fNIRS based BCI system using HMM. Applied 
Mechanics and Materials 385-386: 1443-1448.

13. Sitaram R, Zhang HH, Guan CT, Thulasidas M, Hoshi Y, et al. (2007) Temporal 
classification of multichannel near infrared spectroscopy signals of motor 
imagery for developing a brain computer interface. NeuroImage 34: 1416-1427.

14. Cui X, Bray S, Reiss AL (2010) Speeded Near Infrared Spectroscopy (NIRS) 
Response Detection. PLoS One 5: e15474.

15. Power SD, Kushki A, Chau T (2011) Towards a system paced near infrared 
spectroscopy brain computer interface: differentiating prefrontal activity due to 
mental arithmetic and mental singing from the no control state. J Neural Eng  8.

16. Brown G, Pocock A, Zhao MJ, Luján M (2012) Conditional Likelihood 
Maximisation: A Unifying Framework for Information Theoretic Feature 
Selection. Journal of Machine Learning Research 13: 27-66.

17. Herff C, Putze F, Heger D, Guan CT, Schultz T (2012) Speaking Mode 
Recognition from Functional Near Infrared Spectroscopy, in 2012 Annual 
International Conference of the IEEE Engineering in Medicine and Biology 
Society 1715-1718.

18. Power SD, Chau T (2013) Automatic single trial classification of prefrontal 
hemodynamic activity in an individual with Duchenne muscular dystrophy. 
Developmental Neurorehabilitation 16: 67-72.

19. Delpy DT, Cope M, van der Zee P, Arridge S, Wray S, et al. (1988) Estimation of 
optical pathlength through tissue from direct time of flight measurement. Phys 
Med Biol 33: 1433-42.

20. Xu B, Fu Y, Miao L, Wang Z, Li H (2011) Classification of fNIRS Data Using 
Wavelets and Support Vector Machine during Speed and Force Imagination. 
2011 IEEE International Conference on Robotics and Biomimetics (ROBIO). 
Phuket, Thailand.

21. Kotsiantis S, Kanellopoulos D (2006) Discretization Techniques: A recent 
survey. International Transactions on Computer Science and Engineering  32: 
47-58.

22. Dougherty J, Kohavi R, Sahami M (1995) Supervised and Unsupervised 
Discretization of Continuous Features. The Twelfth International Conference 
on Machine Learning. Tahoe City, California, USA.

23. Liu H, Setiono R (1997) Feature selection via discretization. Ieee Transactions 
on Knowledge and Data Engineering 9: 642-645.

24. Cui X, Bray S, Reiss AL (2010) Functional near infrared spectroscopy (NIRS) 
signal improvement based on negative correlation between oxygenated and 
deoxygenated hemoglobin dynamics. NeuroImage 49: 3039-3046.

25. Battiti R (1994) Using mutual information for selecting features in supervised 
neural net learning. IEEE Transactions on Neural Networks 5: 537-550.

26. Chang CC, Lin CJ (2011) LIBSVM: A Library for Support Vector Machines. Acm 
Transactions on Intelligent Systems and Technology 2.

27. Cortes C, Vapnik V (1995) Support Vector Networks. Machine Learning 20: 
273-297.

feature type of Hb and HbT is not significant, the error rate of trained 
subjects is lower than the no trained subjects at a significant level of 0.01 
for both feature type of HbO and HbD. 

Discussions and Conclusions
In this paper, we present a signal discretization and feature 

selection method to improve classification accuracy for fNIRS based 
BCI system, which can classifiy right hand clench force motor imagery 
and clench speed motor imagery at an accuracy of 69%-81% through 
5 fold cross validation. HbD (Difference between HbO and Hb) is 
proposed as a new feature type and shows outstanding performance in 
some subjects. Although feature discretization has been used in many 
machine learning areas, we notice that it has not been used in BCI 
applications before. Our research shows that discretization using Chi2 
algorithm can improve classification accuracy by 2%-9% for different 
feature types using signal from the channel above C3. Further more, 
the optimum feature subset chosen by ‘MIFS’ criterion can improve the 
classification accuracy by 35% compared with feature set containing all 
the discrete channels.

Due to the specificity of fNIRS signals, it is hard to conclude which 
concentration signal type is best for all the subjects. Our research 
shows that the best signal type depends on subject. In our study, Hb, 
HbO and HbD can get optimum results for different subjects, but HbT 
does not perform best in all the subjects. This may be explained by 
the strongly negatively correlated relationship between Hb and HbO. 
Our study also shows that subjects can improve their performance 
through training using feature type of HbO and HbD at a significant 
level of 0.01, which means that sufficient training before experiment is 
necessary to improve the classification accuracy.

Our research shows that classification of clench force motor 
imagery and clench speed motor imagey of the same hand is possible 
at a resonable accuracy, which can be used to increase the command 
number for BCI control. Also, the feature discretizaiton and feature 
optimization method of this paper can be used in online BCI 
applications.
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