
Volume 6   Issue 5 • 1000272
J Alzheimers Dis Parkinsonism
ISSN:2161-0460, an open access journal 

Open AccessMini Review

Gao et al., J Alzheimers Dis Parkinsonism 2016, 6:5
DOI: 10.4172/2161-0460.1000272Journal of 

Alzheimer’s Disease & ParkinsonismJo
ur

na
l o

f A
lzh

eim
ers Disease & Parkinsonism

ISSN: 2161-0460

*Corresponding author: Wende Li, Guangdong Key Laboratory for Research 
and Development of Natural Drug, Guangdong Medical College, Zhanjiang, 
Guangdong, China, Tel: 0759-2230067; E-mail: lwd@gdlami.com

Received September 18, 2016; Accepted October 12, 2016; Published October 
19, 2016

Citation: Gao X, Gan Y, Wu K, Li W, Huang R (2016) Fat-1 Transgenic Mice: 
An Endogenous N-3 Polyunsaturated Fatty Acids Mouse Model is used in AD 
Research. J Alzheimers Dis Parkinsonism 6: 272. doi: 10.4172/2161-0460.1000272

Copyright: © 2016 Gao X, et al. This is an open-access article distributed under 
the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

Keywords: Omega-3 polyunsaturated fatty acids; Alzheimer’s 
disease; Transgenic fat-1 mouse

Alzheimer’s disease (AD) is an age-related and progressive 
neurodegenerative disorder characterized by memory deficits and 
neuropsychiatric dysfunction and it is the most common cause 
of dementia [1]. Current statistics indicate that 44 million people 
throughout the world suffered from AD in 2015 and it is estimated 
that the populations will double by 2050 [2]. The neuropathological 
features in AD patients are presence of the abnormal depositions of 
amyloid-β peptide, the formation of intracellular neurofibrillary tangles 
(NFTs) and neurons lost [3]. Aggregated Aβ plays a pivotal role in the 
progression of AD, by activating oxidative stress to induce neurons 
death [1]. Therefore, Strategies for control of AD are associated with 
decreasing Aβ depositions and loss of neurons. 

Omega-3 polyunsaturated fatty acids (n-3 PUFAs) have been 
broadly considered for reducing AD risk as a potential nutritional 
product. N-3 PUFAs are essential unsaturated fatty acids including 
α-linolenic acid (ALA), eicosapentaenoic acid (EPA), docosahexaenoic 
acid (DHA) [4]. Evidences suggest that n-3 PUFAs play an important 
role in the nervous system, maintaining the structural integrity of cell 
membranes and normal nerve function, as forming part of the cell 
membrane [5]. DHA is a key functional molecule to maintain brain 
development and function in the brain, which has been proved by He 
C’s experiment. This study shows that DHA promotes differentiation 
and neurite outgrowth of neuronal cells, which is derived from mouse 
ES cells, also enhance the cells proliferation [6]. In addition, most 
preclinical studies demonstrated that n-3 PUFA supplementation could 
modulate AD neuropathology and prevent further progression [7]. At 
least 8 publications during the past 5 years have demonstrated that the 
treatment of mixed EPA and DHA or DHA alone supplementation 
could improve cognitive and neuronal variables in AD animal 
model [8]. Augment longchain n–3 PUFAs in the brain could 
reduce neuroinflammation [9] and oxidative stress [10] decreased 
hippocampal Aβ plaque density and prefibrillar Aβ oligomers [11], 
mitigated tau hyperphosphorylation [12], evenly restored spatial 
memory deficits, behavioral performance [13] and improved cognition 
[14,15]. However, some randomized clinical trials (RCT) indicated 
that dietary n-3 PUFAs did not show efficacy for advanced AD [16,17]. 

Thus, there is still insufficient conclusion to link n-3 PUFAs intake with 
AD improvement and some studies point out the conventional animal 
models with n-3 PUFAs dietary as the main driving factor behind these 
negative associations [18]. 

Due to generated restriction of n-3 PUFAs, dietary supplement 
is the only way to get n-3 PUFAs in humans and mammals. Dietary 
supplementation is a primary method to research the relationship 
between n-3 PUFAs intake and AD protection. However, this drawback 
of approach is difficult to control the dietary PUFAs components and 
ratio, which are easily interfered by feeds. For one reason, parts of lipid 
peroxide from n-3 PUFAs can increase Aβ production, which is positive 
to the progression of AD. For another reason, n-3 PUFAs agents are 
difficult to cross the blood-brain barrier, meaning the concentration is 
ineffective in brain [19]. Besides, Low n-3/n-6 PUFAs ratio contributes 
to the onset of AD. To avoid potential confounding dietary factors, 
Kang et al. [20] generated a transgenic mouse capable of synthesizing 
n-3 PUFAs endogenously (fat-1 mouse), which carried fat-1 gene from 
Caenorhabditis elegans can encodes n-3 desaturase that converts n-6 
PUFAs to n-3 PUFAs by feeding high n-6 PUFAs diet. The advantage of 
fat-1 mice can increase the absolute amount of n-3 PUFAs and decrease 
the tissue level of n-6 PUFAs, leading to a balanced n-3/n-6 PUFAs 
ratio in body tissues without changing the mass of tissue fatty acids. 
Thus, fat-1 mice are suitable for crossing with wild-type (WT) mice or 
other AD model mice, which offspring is a good model that evaluates 
the impact of enriched n-3 PUFAs or appropriate n-6/n-3 PUFAs ratio 
in AD.
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 Abstract
Omega-3 polyunsaturated fatty acids (n-3 PUFAs) have been wildly considered for positive effect of Alzheimer’s 

disease (AD). However, the intake of n-3 PUFAs is not encouraging to draw firm conclusion through preclinical 
and clinical research. The contribution of debate is derived from interference of dietary n-3 PUFAs, because of 
controlling the components and ratio of dietary PUFAs difficultly. In this context, transgenic fat-1 mouse that is 
capable of converting n-6 to n-3 fatty acids by feeding high n-6 PUFAs diet, leading to balance high n-3/n-6 PUFAs 
ratio, with increasing endogenous n-3 PUFAs and decreasing n-6 PUFAs in their organs and tissues. Thus, fat-1 
mice is an ideal model to study the efficacy and mechanism of n-3 PUFAs in AD research, without the interference of 
the inevitable factors from dietary n-3 PUFAs. The fat-1 transgenic mice have become a useful tool for studying the 
potential benefit of endogenous n-3 PUFAs in behavior and neuromechanism of AD.
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Up to now, several studies have reported that endogenous n-3 
PUFAs can improve neuropathology of AD by crossing fat-1 mice 
with other mice model. Lebbadi et al. [21] firstly used fat-1 mice 
crossing with 3xTg-AD mice to evaluate the effect of endogenous 
n-3 PUFAs to the neuropathology of AD. The results indicated that
increasing endogenous n-3 PUFAs and keeping balance of n-3/n-6
PUFAs ratio showed efficacy against an AD-like neuropathology.
Recently, another report [22] examined the neuronal protection of
exogenous and endogenous DHA against Aβ1–42 induced injury in vitro
and in vivo by comparing fat-1 mice with WT mice. The results also
demonstrated that endogenous DHA is neuroprotective via decreasing
Aβ1–42 oligomer-induced neuronal death. However, their research is still 
the lack of pathological and behavioral data drawing firm conclusion.
Therefore, to accurately evaluate the impact of endogenous n-3 PUFAs
on cognition and behavior in AD mice model, we crossed fat-1 mice
with Swedish mutation human amyloid protein precursor 695K595N/M596L

(APP) transgenic mice, which like human age of AD onset. The data
suggested enriched endogenous n-3 PUFAs in the brain could slow
cognitive decline and prevent neuropsychological disorder in AD [23].

It is evident from the preceding discussion in understanding of 
the potential benefit of endogenous n-3 PUFAs in neuropathology and 
behavior of AD. Fat-1 mouse model has been proved to be an ideal 
animal model for endogenous n-3 PUFAs of AD research. However, 
the mechanism of the protective effect of PUFA on AD is still unclear. 
Previous reports have suggested that G-protein-coupled receptor 40 
(GPR40) may be a functional therapeutic target for neuroprotection in 
the AD treatment [24]. GPR40 is a free fatty acid receptor throughout 
the primate brain, which can bind most of PUFAs and trigger GPR40 
signaling pathway to provide neuro protection effect [25]. If combing 
GPR40 with rich endogenous n-3 PUFAs AD mice model based on fat-
1 mice, it will enhance to clarify GPR40 functional role in the field of 
AD treated with n-3 PUFAs.
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