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Obesity and its associated metabolic syndrome and type 2
diabetes are becoming epidemics in the United States. The most
recent data show that nationwide incidence of obesity (BMI > 30 kg/
m®) and type 2 diabetes has reached to 27.8% and 8.7%, respectively
(CDC Behavioral Risk Factor Surveillance System 2012). Endothelial
dysfunction, characterized by a deficiency of bio-available nitric
oxide (NO), has been found to precede the development of type 2
diabetes and is significantly correlated with insulin resistance [1].
Early studies have shown that feeding rodent animals with a high fat
diet (HFD) (~60% of calories) produces not only obesity [2] but also a
state of insulin resistance [3]. These HFD-fed rodents develop striking
hyperinsulinemia with significantly reduced whole body insulin
sensitivity and glucose disposal rates, severe impairments in both
muscle and adipose tissue insulin signaling and glucose uptake and an
impairment of insulin-mediated suppression of hepatic glucose output
[4-6]. Moreover, obesity has been shown to be a state of low-grade
chronic systemic inflammation known as the metabolic inflammation
characterized by elevated levels of pro-inflammatory cytokines (such
as TNFa, IL-6, IL-1B, CCL2 etc.), accumulation of leukocytes within
adipose tissue and other organs, activation of macrophages in both
liver and fat and activation of pro-inflammatory signaling pathways in
multiple organs or tissues [7,8]. The mechanisms causing the metabolic
inflammation have been related to excess nutrient intake (metabolic
stress) including HFD feeding [7,8]. Dietary fat intake not only
significantly increases circulating free fatty acids (FFAs) concentration
but also affects the composition of circulating FFAs [9]. Four-week
HEFD feeding has been shown to cause metabolic endotoxemia leading
to the metabolic inflammation in mice [10]. The lipopolysaccharide
(LPS) -induced inflammatory responses in macrophages have been
shown to be mediated by Toll-Like Receptor-4 (TLR4) (pattern
recognition receptors that sense lipopeptides and lipopolysaccharides
of bacterial walls) [11]. Interestingly, saturated fatty acids (SFAs), but
not unsaturated fatty acids, can induce an inflammatory response like
LPS through activation of TLR4 [12,13]. It has also been proposed that
nutrients per se are naturally inflammatory [7]. While the flood of
nutrients in a short period of time may induce a brief episode of stress
signaling in the target cells, long-chain SFAs, particularly palmitate,
have been shown to directly activate TLR4 that may require CD36 (a
class B scavenger receptor) [14-16], leading to IKKB/NF«B and c-jun
N-terminal kinase (JNK) pathway activation, increased production
of pro-inflammatory cytokines TNFa., IL-1B and IL-6 [13,17-19] and
significant insulin resistance as reflected by impairments in insulin-
stimulated tyrosine phosphorylation of IRS-1, serine phosphorylation
of Akt and eNOS, and NO production. Interestingly, recent studies have
shown evidence that vascular endothelium that line up the inner wall
of vasculature appear to be the first responder to the environmental
insult, high fat feeding, leading to the vascular endothelial metabolic
inflammation and insulin resistance.

Vascular endothelial cells (ECs) have pleiotropic functions and
regulate a large variety of cellular processes including coagulation,
fibrinolysis, angiogenesis, adhesion and transmigration of inflammatory
cells and vasculature hemodynamics. Another very important vascular
endothelial function is providing a barrier that regulates entry of
nutrients and hormones into the interstitium of peripheral tissues

[20,21]. This is particularly true for skeletal muscle, a major site of fuel
use, where its continuous vascular endothelium has well-developed
junctional structures and abundant caveolae that provides a relatively
tight diffusional barrier. Muscle’s tight endothelium has constituted the
structural basis for a strong argument that the transit of insulin from
the vascular to the interstitial compartment within skeletal muscle is
rate limiting for insulin’s metabolic action [21]. Most importantly, this
rate-limiting step for peripheral insulin action is delayed in insulin-
resistant obese subjects [22-24] and it has been estimated that slow
trans-endothelial insulin transport may account for 30-40% of insulin
resistance seen with human obesity or type 2 diabetes [22,23,25].
Current evidence indicates that insulin transendothelial transport
(TET) is a saturable process being mediated by insulin receptor (IR)
at a physiological concentration of insulin [26-28] and also involves
IGF-1R (and IR/IGF-1R hybrid receptors) when a supraphysiological
concentration of insulin is applied [28]. It has also been reported
that insulin act on vascular ECs through its intracellular signaling to
facilitate its own uptake and TET [29,30]. Inhibiting insulin signaling
either by treatment of cultured vascular ECs with the specific inhibitor
of insulin signaling pathways or by pro-inflammatory cytokines such
as TNFa or IL-6 in vitro [30-32] or by HFD feeding [32] in vivo or by
endothelium-specific knockout of IRS-2 in vivo [33] all severely impair
insulin TET.

Several laboratories have also reported the increased expression of
pro-inflammatory cytokines in the liver, skeletal muscle and adipose
tissue which required between 8 and 16 weeks, respectively after starting
HEFD feeding [34-36]. The vascular EC appears particularly sensitive to
HED, for example, a single high-fat meal quickly provokes endothelial
dysfunction in humans as measured by flow-mediated dilation and
increases the plasma levels of TNFa,IL6, intercellular adhesion
molecule-1 and vascular cell adhesion molecule-1 in healthy humans
[37,38]. In a study, HFD induced defects in the insulin signaling and
increased the inflammatory responses in thoracic aorta as early as one
week after starting the HFD [35]. This suggests that the vasculature may
be the “first responder” to the HFD insult.

The activation of TLR4/IKKB/IxBa/NF«B pathway has been
implicated to play a central role in the pathogenesis of both HFD-
induced vascular inflammation in mice [18,35] and SFAs-induced
endothelial inflammatory responses in cultured vascular ECs [19,39,40].
Inhibiting TLR4 signaling can effectively suppress palmitate-induced
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inflammation both in vivo and in cultured vascular ECs [13,18,19]. In
addition, SFAs stimulate NADPH oxidase-dependent reactive oxygen
species (ROS) production, and inhibition of TLR4 signaling inhibits
both SFAs-stimulated ROS production and HFD-induced NOX4
expression [19].

Taken together, current data indicate that HFD feeding causes

a chronic low-grade inflammatory state via activation of TLRs that
occurs much earlier in vascular endothelial cells than that in multiple
peripheral tissues or organs such as adipose tissue and liver. The
HFD-induced metabolic inflammation mediates extensive cellular
pathology, e.g. insulin resistance, leading to the impairment in insulin
transendothelial transport. Thus, the vascular endothelial metabolic
inflammation induced by high fat feeding clearly constitutes a critical
link between high fat feeding, insulin resistance, and impaired trans-
endothelial insulin transport.
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