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Obesity and its associated metabolic syndrome and type 2 
diabetes are becoming epidemics in the United States. The most 
recent data show that nationwide incidence of obesity (BMI > 30 kg/
m2) and type 2 diabetes has reached to 27.8% and 8.7%, respectively 
(CDC Behavioral Risk Factor Surveillance System 2012). Endothelial 
dysfunction, characterized by a deficiency of bio-available nitric 
oxide (NO), has been found to precede the development of type 2 
diabetes and is significantly correlated with insulin resistance [1]. 
Early studies have shown that feeding rodent animals with a high fat 
diet (HFD) (~60% of calories) produces not only obesity [2] but also a 
state of insulin resistance [3]. These HFD-fed rodents develop striking 
hyperinsulinemia with significantly reduced whole body insulin 
sensitivity and glucose disposal rates, severe impairments in both 
muscle and adipose tissue insulin signaling and glucose uptake and an 
impairment of insulin-mediated suppression of hepatic glucose output 
[4-6]. Moreover, obesity has been shown to be a state of low-grade 
chronic systemic inflammation known as the metabolic inflammation 
characterized by elevated levels of pro-inflammatory cytokines (such 
as TNFα, IL-6, IL-1β, CCL2 etc.), accumulation of leukocytes within 
adipose tissue and other organs, activation of macrophages in both 
liver and fat and activation of pro-inflammatory signaling pathways in 
multiple organs or tissues [7,8]. The mechanisms causing the metabolic 
inflammation have been related to excess nutrient intake (metabolic 
stress) including HFD feeding [7,8]. Dietary fat intake not only 
significantly increases circulating free fatty acids (FFAs) concentration 
but also affects the composition of circulating FFAs [9]. Four-week 
HFD feeding has been shown to cause metabolic endotoxemia leading 
to the metabolic inflammation in mice [10]. The lipopolysaccharide 
(LPS) -induced inflammatory responses in macrophages have been 
shown to be mediated by Toll-Like Receptor-4 (TLR4) (pattern 
recognition receptors that sense lipopeptides and lipopolysaccharides 
of bacterial walls) [11]. Interestingly, saturated fatty acids (SFAs), but 
not unsaturated fatty acids, can induce an inflammatory response like 
LPS through activation of TLR4 [12,13]. It has also been proposed that 
nutrients per se are naturally inflammatory [7]. While the flood of 
nutrients in a short period of time may induce a brief episode of stress 
signaling in the target cells, long-chain SFAs, particularly palmitate, 
have been shown to directly activate TLR4 that may require CD36 (a 
class B scavenger receptor) [14-16], leading to IKKβ/NFκB and c-jun 
N-terminal kinase (JNK) pathway activation, increased production 
of pro-inflammatory cytokines TNFα, IL-1β and IL-6 [13,17-19] and 
significant insulin resistance as reflected by impairments in insulin-
stimulated tyrosine phosphorylation of IRS-1, serine phosphorylation 
of Akt and eNOS, and NO production. Interestingly, recent studies have 
shown evidence that vascular endothelium that line up the inner wall 
of vasculature appear to be the first responder to the environmental 
insult, high fat feeding, leading to the vascular endothelial metabolic 
inflammation and insulin resistance. 

Vascular endothelial cells (ECs) have pleiotropic functions and 
regulate a large variety of cellular processes including coagulation, 
fibrinolysis, angiogenesis, adhesion and transmigration of inflammatory 
cells and vasculature hemodynamics. Another very important vascular 
endothelial function is providing a barrier that regulates entry of 
nutrients and hormones into the interstitium of peripheral tissues 

[20,21]. This is particularly true for skeletal muscle, a major site of fuel 
use, where its continuous vascular endothelium has well-developed 
junctional structures and abundant caveolae that provides a relatively 
tight diffusional barrier. Muscle’s tight endothelium has constituted the 
structural basis for a strong argument that the transit of insulin from 
the vascular to the interstitial compartment within skeletal muscle is 
rate limiting for insulin’s metabolic action [21]. Most importantly, this 
rate-limiting step for peripheral insulin action is delayed in insulin-
resistant obese subjects [22-24] and it has been estimated that slow 
trans-endothelial insulin transport may account for 30-40% of insulin 
resistance seen with human obesity or type 2 diabetes [22,23,25]. 
Current evidence indicates that insulin transendothelial transport 
(TET) is a saturable process being mediated by insulin receptor (IR) 
at a physiological concentration of insulin [26-28] and also involves 
IGF-1R (and IR/IGF-1R hybrid receptors) when a supraphysiological 
concentration of insulin is applied [28]. It has also been reported 
that insulin act on vascular ECs through its intracellular signaling to 
facilitate its own uptake and TET [29,30]. Inhibiting insulin signaling 
either by treatment of cultured vascular ECs with the specific inhibitor 
of insulin signaling pathways or by pro-inflammatory cytokines such 
as TNFα or IL-6 in vitro [30-32] or by HFD feeding [32] in vivo or by 
endothelium-specific knockout of IRS-2 in vivo [33] all severely impair 
insulin TET. 

Several laboratories have also reported the increased expression of 
pro-inflammatory cytokines in the liver, skeletal muscle and adipose 
tissue which required between 8 and 16 weeks, respectively after starting 
HFD feeding [34-36]. The vascular EC appears particularly sensitive to 
HFD, for example, a single high-fat meal quickly provokes endothelial 
dysfunction in humans as measured by flow-mediated dilation and 
increases the plasma levels of TNFα,IL6, intercellular adhesion 
molecule-1 and vascular cell adhesion molecule-1 in healthy humans 
[37,38]. In a study, HFD induced defects in the insulin signaling and 
increased the inflammatory responses in thoracic aorta as early as one 
week after starting the HFD [35]. This suggests that the vasculature may 
be the “first responder” to the HFD insult. 

The activation of TLR4/IKKβ/IκBα/NFκB pathway has been 
implicated to play a central role in the pathogenesis of both HFD-
induced vascular inflammation in mice [18,35] and SFAs-induced 
endothelial inflammatory responses in cultured vascular ECs [19,39,40]. 
Inhibiting TLR4 signaling can effectively suppress palmitate-induced 

Jo
ur

na
l o

f O
be

sity & Weight Loss Therapy

ISSN: 2165-7904

Journal of
Obesity & Weight Loss Therapy



Citation: Wang H (2012) Endothelial Metabolic Inflammation: A Link between High Fat Feeding, Insulin Resistance, and Impaired Trans-Endothelial 
Insulin Transport. J Obes Wt Loss Ther 3:e110. doi:10.4172/2165-7904.1000e110

Page 2 of 3

Volume 3 • Issue 6 • 1000e110J Obes Wt Loss Ther
ISSN: 2165-7904 JOWT, an open access journal

inflammation both in vivo and in cultured vascular ECs [13,18,19]. In 
addition, SFAs stimulate NADPH oxidase-dependent reactive oxygen 
species (ROS) production, and inhibition of TLR4 signaling inhibits 
both SFAs-stimulated ROS production and HFD-induced NOX4 
expression [19].

Taken together, current data indicate that HFD feeding causes 
a chronic low-grade inflammatory state via activation of TLRs that 
occurs much earlier in vascular endothelial cells than that in multiple 
peripheral tissues or organs such as adipose tissue and liver. The 
HFD-induced metabolic inflammation mediates extensive cellular 
pathology, e.g. insulin resistance, leading to the impairment in insulin 
transendothelial transport. Thus, the vascular endothelial metabolic 
inflammation induced by high fat feeding clearly constitutes a critical 
link between high fat feeding, insulin resistance, and impaired trans-
endothelial insulin transport. 
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