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Introduction
Water is a natural resource indispensable to the maintenance of 

life on earth and an essential factor for structuring socio-economic 
development. Thus, it plays a vital and irreplaceable role in the entire 
ecological balance becoming essential to be managed in a measured and 
balanced way [1].

Rivers are one of the most intensively used and disturbed resources 
by man [2,3], wherein pollution is a severe worldwide problem that 
urgently requires the implementation of plans and ideas for routine 
monitoring. Every day, two million tons of human waste is discharged 
into water courses, including industrial wastes and other chemicals such 
as agricultural pesticides and fertilizers [4]. Even though water quality 
investigations have traditionally focused on nutrients, bacteria, metals 
and priority pollutants, recent research has revealed the existence of 
hundreds of new organic contaminants in wastewater and impacted 
urban surface waters [5,6]. These compounds can be mentioned as 
“Emerging Organic Contaminants” (EOCs). 

Emerging organic contaminants can be defined as naturally 
occurring, manufactured or manmade chemicals or materials which 
have now been discovered or are suspected to be present in several 
environmental compartments and whose toxicity or persistence are 
likely to alter the metabolism of a living being [7]. That said, Houtman [8] 
classified EOCs in three categories: (1) compounds newly introduced to 
the environment; (2) compounds that have only recently been detected 
in the environment due to improved detection techniques and (3) 
compounds that have been known for a long time but have only recently 
been shown to have adverse effects on living beings (e.g. hormones). 
Nowadays, more than 1000 emerging pollutants, their metabolites 
and transformation products, are listed as present in Europe’s aquatic 
environment (http://www.norman-network.net). 

Occurrence of EOCs can result from point (mainly urban and 
industry) and/or diffuse (agriculture) pollution. EOCs from urban 
or industrial WWTP are directly discharged into rivers where their 
environmental fate is of concern [9]. Rivers disperse EOCs to other 
water bodies, including aquifers, estuaries and marine systems. There 

is also direct discharge of wastewater to aquifers. This technique has 
been used in countries like Israel, Spain, US, Australia, South Africa 
and Japan [10-12]. EOCs discharged to groundwater may also occur 
through on-site (septic) waste treatment systems, threatening the 
groundwater supplies [13].

The fact that most of this compounds are chemicals that are 
extrinsic to most of the organisms’ normal metabolism, i.e., xenobiotics, 
it becomes important to understand the sources, occurrences and 
effects of the EOCs on behalf of understanding risks and developing 
monitoring and mitigation policies. Thus, the aim for this review is 
to examine the: (1) occurrence and sources of endocrine disrupting 
compounds, xenobiotics capable of mimic hormones, and (2) effects of 
a variety of endocrine disrupting compounds in Chironomus riparius, 
an important aquatic insect used in ecotoxicological studies mainly, 
due to its association with benthic sediments where many pollutants 
accumulate.

Endocrine disrupting compounds

The United States Environmental Protection Agency [14] has 
defined environmental “endocrine-disrupting compounds” (EDCs) as 
exogenous agents that interfere with the ‘‘synthesis, secretion, transport, 
binding, action, or elimination of natural hormones in the body that 
are responsible for the maintenance of homeostasis, reproduction, 
development and/or behaviour’’. However, several opinions as to what 
defines an EDC can be found in the literature [14]. These contaminants 
tend to mimic or antagonize the effects of hormones, alter the 
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pattern of synthesis and the metabolism of hormones and modify the 
hormone receptor levels, thus disrupting the normal functioning of the 
endocrine system. Their harmful effects are on growth, development 
and reproduction in certain species and are associated with human 
disorders like infertility and birth defects [15].

According to Kresinova et al. [16], the most commonly studied 
and monitored EDCs are the natural oestrogens such as, oestrone 
(E1), 17β-estradiol (E2) and estriol (E3), synthetic oestrogens such as, 
17α-ethinylestradiol (EE2) and industrial compounds such as bisphenol 
A (BPA) and nonylphenol (NP). 

Possible sources and routes of the previously mentioned EDCs, in 
water cycle, are shown in Figure 1 [17]. It shows that rivers are affected 
direct or indirectly by five major sources, namely aquaculture, animal 
husbandry, domestic households, hospitals and industries and landfills.

Agriculture is also an important source to consider, since most of 
the drugs used in veterinary medicine end up in animal excreta. When 
manure is used on agricultural fields, the non-metabolized compounds 
that exist in it (or their biologically active metabolites) may affect the 
aquatic organisms mainly due to run-offs [18]. Moreover, pesticides 
are frequently applied to agricultural fields, which, coupled to their 
moderate persistence in the soil, can result in persistent surface water 
contamination [19,20].

Rivers are the first media receiving these estrogenic agents mainly 
arising from the discharge of effluents from WWTPs [21]. Given the 
important role and ecological services that lotic ecosystems provide 
to human communities, it is important to monitor the existing levels 
of EDCs on the resources used to produce drinking and irrigation 
water, as well as in those used for recreational purposes. Table 1 shows 
the occurrence and distribution of these six categories of EDCs, that 
can potentially cause an estrogenic endocrine disruption at very low 
concentrations, in surface water from ten countries dispersed worldwide 
[22].

From the collected data, we can argue that the concentrations of E1 
in surface water are usually higher than the other natural oestrogens, E2 
and E3. This might be due to the higher output rate of E1 from organisms 
and to the transformation of E2 to E1. Despite this, the synthetic 

oestrogen, EE2, is present at trace levels of several ng/L in surface water 
(Table 1). Considering that EE2 is considerably more persistent than E1, 
E2 and E3 [23], it is necessary to reduce the input of EE2 in surface water 
through an effective treatment of the effluents by the WWTPs. 

Outstandingly, significantly higher levels of BPA and NP, when 
compared to the steroid oestrogens, were present in most surface water 
samples (Table 1), probably due to the wide usage of these synthetic 
chemicals in industries and the defectively treated wastewater. The 
discharge of domestic and industrial wastewater has been considered as 
a main cause of the presence of these xenoestrogens in surface water in 
comparison to other sources [24].

Effects on aquatic invertebrates–Chironomus riparius 

Different authors consider that assays utilizing invertebrates offer 
some advantages over vertebrate models, since their use involves fewer 
ethical concerns over their welfare, doses are easier to deliver in the 
aquatic medium and their shorter life-span and inexpensive cultural 
requirements allow larger sets of data to be collected [25]. 

However, the scientific knowledge on the invertebrate’s endocrine 
system is very incomplete for most of the phyla [25] even though 
invertebrates are key-components of aquatic ecosystems. Moreover, 
the available information, on the biological effects of EDCs in these 
organisms, is scattered in comparison with vertebrates [26-28] 
Therefore, a problem arises since invertebrates are at considerable risk 
of exposure to these compounds. 

Chironomids are a ubiquitous and ecologically diverse family of 
dipterans. Their ability to tolerate a wide range of conditions, including 
salinity, temperature, pH, current velocity and reduced levels of 
dissolved oxygen allows them to have a widespread distribution [29]. 
Chironomids’ larvae are mostly used in aquatic ecotoxicological studies 
mainly because of their association with benthic sediments where many 
contaminants accumulate [29,30].

Chironomus riparius is widely used in environmental toxicology, 
and has recently been selected as a reference organism for investigations 
of the potential endocrine disrupting effects of chemicals [31,32].

Bisphenol-A: Bisphenol-A (BPA) is widely used as an intermediate 
in the production of epoxy and polycarbonate resins, in dental 
sealants, and in mixtures with other plastic products [33,34]. The high 
production and widespread use of this industrial compound has been 
raising concern mainly because it has been shown to have endocrine 
activity in both vertebrates [35] and invertebrates. 

Hahn et al. [36] detected, in a semi-static test system using 1.0, 100 
and 3000 μg/L of BPA, an alteration of vitellogenin/vitellin production 
in males and female. Yolk concentrations in males decreased by 20 to 
25% after exposure to BPA in all concentrations, while females were only 
affected in the highest BPA treatment, where yolk immunoreactivity 
was reduced by about 10% compared to the control [36]. 

Watts et al. [37] demonstrated that BPA could impact the number 
of emergences and the percentage of adult emergence. These effects 
occurred mainly in Chironomus riparius second generation, where 
the emergence of male and female adults was significantly delayed 
at concentrations ranging from 78 ng/L to 750 μg/L. Two years later 
Watts et al. [38] exposed Chironomus riparius larvae to sub-lethal 
concentrations of BPA (10 ng/L–1.0 mg/L). Molting was delayed 
and larval wet weight significantly reduced at the highest treatment 
concentration (1.0 mg/L). 
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Figure 1: Possible sources and routes of EDCs in water cycle.
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Planelló et al. [39] showed for the first time that BPA has a direct 
interaction, at a molecular level, with the insect endocrine system. 
Furthermore, they found that BPA acted similarly between vertebrates 
and invertebrates, i.e., BPA modulated the expression of the ecdysone 
receptor gene (EcR) in Chironomus riparius larvae, in a comparable 
way to that seen for the oestrogen receptor and other steroid receptors 
well characterized in vertebrates. Although more intensive studies 
are needed, the authors claim that EcR may be a useful tool for the 
screening of environmental xenoestrogens in insects. Moreover, the 
absence of a significant effect on ribosomal production suggests that 
BPA, for the times and dose tested in their study, did not affect the basic 
cell metabolism. In contrast, it was found that BPA can increase HSP70 
gene expression, which is commonly considered to be an indication of 
cellular stress [39,40]

Park and Choi [41] and Martinez-Paz et al. [42], confirmed the 
genotoxicity potential of BPA in Chironomus riparius by using the 
comet assay, despite using different concentrations, 5–500 µg/L and 
0.5–3 mg/L, respectively.

The study presented by Martinez-Paz et al. [42] is one of the first 
reports that support the activation of DNA repairing mechanisms 
under prolonged exposure to BPA genotoxicity, i.e., they showed that 
the extent of DNA damage at the lower concentration decreased with 
exposure time, possibly due to DNA repair activity. 

Butyl benzyl phthalate: Butyl benzyl phthalate (BBP) is an 
important industrial chemical mainly used as a plasticizer in the 
production of vinyl tiles [43]. Because BBP is a phthalate, which softens 
and increases the flexibility of plastics without binding chemically to 
them, it tends to leach into the surrounding environment, becoming a 
ubiquitous pollutant and, consequently, entering the food chain [43]. 

Herrero et al. [44] tested short-term effects (24 h), long-term 
effects (48 h) and delayed toxicity of BBP in Chironomus riparius. Their 
results showed that BBP triggered a clear dose-dependent effect on the 
transcriptional levels of hsp70, hsp40, and hsp27 after 24 h exposures, 
but in different ways. On one hand, the highest concentrations 
produced a significant overexpression of hsp70 and hsp27 genes. On 
the other hand, the gene coding for the 40 kDa protein was inhibited 
even at the lowest concentrations. Prolonging BBP exposures to 48 h 
caused widespread inhibition of all the genes studied except for hsc70. 

In contrast, hsp70, hsp40 and hsp10 inducible genes tended towards 
significant overexpression after the toxin removal, in the delayed 
toxicity experiments [44]. Other studies have already confirmed BBP’s 
ability to affect the expression of heat-shock genes [40,45].

Exposure to BBP for 24 h caused a similar dose-dependent 
overexpression of EcR and ERR at higher concentrations. Their 
responses were also similar in longer experiments, with a moderate 
decrease for all concentrations after 48 h exposure and a marked up-
regulation in the delayed toxicity tests [44]. Planelló et al. [45] had 
already shown a significant overexpression of EcR in these insects due 
to BBP.

The effects of BBP on the transcriptional activity of GAPDH, 
CYP4G and GPx as well as variations in GST enzyme activity were also 
studied by Herrero et al. [44]. GAPDH transcriptional levels suffered 
no noteworthy changes, except for a significant overexpression at the 
highest BBP concentration after 24 h and a slight widespread repression 
after 48 h. No effects were detected in either GYP4G or GPx gene 
neither in 24 h acute exposures or delayed toxicity tests, except for a 
significant increase of the CYP4G level after removing 1 µg/L BBP. GST 
activity was significantly reduced, even at the lowest dose, in the first 
24 h in the presence of BBP. This effect was emphasized after 48 h [44]. 
Moreover, BBP affects the levels of ribosomal transcription. According 
to Planelló et al. [45], a decrease in the levels of immature rRNA was 
caused by exposure to BBP at the higher concentrations tested, from 1 
mg/L and above.

Nonylphenol: Nonylphenols (NP) are products of the degradation 
of nonylphenol polyethoxylates, which are widely used as surfactants 
with commercial, household, industrial and institutional applications. 
The discharge of effluents from sewage treatment plants represents the 
major source of nonylphenol in the environment. Here, nonylphenol 
can accumulate in different environmental partitions such as, river 
sediments and biota, acting in a more lipophilic and toxic way than 
their parent compounds [46,47]. 

In laboratory bioassays, Meregalli et al. [48] investigated mouthpart 
deformities of Chironomus riparius when larvae were exposed to 4NP 
(10, 50 and 100 μg/L). Survival of the larvae was not affected by the 
tested concentrations, but the frequency of mentum deformities 
increased significantly with 4NP at 50 and 100 μg/L. 

EDCs E1
(ng/L)

E2
(ng/L)

E3
(ng/L)

EE2
(ng/L)

BPA
(ng/L)

NP
(ng/L)

AUSa 0.55–20.91 0.39–3.77 n.d.–1.9 n.d.–0.52 4–59 287–2058
BRAa,e n.d.–39 n.d.–14.8 n.d.–2.3 n.d.–25 25-84 n.d.

CHNa,c,d n.d.–17.8 n.d.–0.42 n.d.–0.37 n.d.–38.1 n.d.–3336.7 0.35–865
ESPa n.d.–17 n.d. n.d. n.d. n.d.–126 96–1483
FRAa 0.8–3.9 0.8–3.6 0.6–3.1 0.6–3.5 2–175 78–467
ITAa n.d.–10 n.d. – n.d. n.d.–140 130 - 580
JPNa 17.1–107.6 2.6–14.7 n.d. n.d. 16.5–150.2 51.6–147
MEXa n.d. n.d. – n.d. 7 89–655
MYSb n.d. 0–0.004 0–0.002 0–0.02 – –
NLDa n.d.–7.2 n.d.–1.0 – n.d.–0.4 n.d. - 1000 n.d.–4100
PRTg n.d.–26.9 n.d.–11.5 – n.d. n.d.–98.4 –
TURf n.d.–6.04 n.d.–10.2 n.d.–16.0 n.d.–14.0 – –

USAa, h 1.12–12.9 n.d.–8.8 n.d.–3.3 n.d. 1.37–57.14 18–690 
E1–oestrone; E2–17β-estradiol; E3–estriol, EE2–17α-ethinylestradiol, BPA–bisphenol A and NP–nonylphenol 

(a Zhang et al. [21], b,c Wang et al. [72], d Zhang et al. [16], e,f Aydin and Talinli [68]; Campanha et al. [69], Praveena et al. [70], g Rocha et al. [71], h Wang et al. [73], n.d.: 
not detected, –: not available

Table 1: Occurrence and distribution of six EDCs in surface water all over the world.
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The process of vitellogenesis is under hormonal control and the 
hormones involved are ecdysteroids and juvenile hormones, which in 
the adult insect, do not trigger molting processes but play a new role 
in gonadal maturation [49]. Hahn et al. [36] determined in a semistatic 
test system using 4NP (1.9 μg/L–2.0 mg/l) an alteration of vitellogenin/
vitellin production in males. The results showed a significant reduction 
in males’ yolk immunoreactivity at 1.9 and 30 μg/L and an increase at 
2.0 mg/L.

Hagger et al. [50] suggested that environmental chemicals, that 
affect reproductive processes, do so, partly, through DNA damage 
pathways. Among the available genotoxicity indicator tests, the Comet 
assay has recently attracted much attention. The Comet assay, also called 
the single-cell gel electrophoresis (SCGE) assay, primarily measures 
DNA strand breakage in single cells. DNA strand breaks are potential 
pre-mutagenic lesions and are sensitive markers of genotoxic damage 
[51]. Both, Park and Choi [41] and Martinez-Paz et al. [42] found, 
in their studies, that DNA breakage increased in a dose-dependent 
manner under short NP treatments (24 h). Martinez-Paz et al. [42] also 
revealed that genetic damage significantly decreased after four days of 
exposure, suggesting the activation of repairing mechanisms under 
prolonged exposures in this species.

In a more recent work, Martinez-Paz et al. [52], studied the Hsp27 
gene as a sensitive marker in response to exposure to chemicals in 
benthic invertebrates, concluding that nonylphenol did not alter the 
Hsp27 gene after the exposures assayed, in Chironomus riparius. Morales 
et al. [40] also studied the transcriptional regulation of an Hsp gene, 
Hsp70. Here, they demonstrate 4-nonylphenol produced a significant 
increase in Hsp70 mRNA levels early after exposure. However, none 
of the experimental treatments assayed caused a significant alteration 
in the expression level of the Hsc70 gene. Hsps are suitable as an 
early warning bioindicator of environmental hazard, because of their 
sensitivity to even minor changes in cellular homeostasis and their 
conservation along the evolutionary scale. Among Hsps, the Hsp70 
family represents one of the most highly conserved proteins identified 
to date, and has constitutive as well as regulated members in all the 
organisms examined [53].

Nair and Choi [54] studied the effect of nonylphenol on the 
modulation of EcR mRNA, by assessing Chironomus riparius ecdysone 
receptor (CrEcR) mRNA expression. They found that the mRNA 
expression level of CrEcR was significantly up-regulated on exposure at 
50 µg/L. Thus, stating its oestrogenic effects as an endocrine disruptor, 
within environmentally relevant concentrations.

Pentachlorophenol: Pentachlorophenol (PCP) was once one of 
the most widely used biocides, mainly as a wood preservative, but also 
for the formulation of fungicidal and insecticidal solutions and for 
incorporation into other pesticide products [55]. Nowadays, PCP is a 
restricted use pesticide and is no longer available to the public due to 
its carcinogenic and endocrine disrupting effects [55,56]. Morales et al. 
[40] studied the effect of PCP in the expression of heat-shock genes,
concluding that, at a concentration of 1 µM, no significant effects were
observed in the expression of HSP70 and HSC70. Its genotoxicity
potential was explored by Martinez-Paz et al. [42], which results
showed for the first time that this compound is genotoxic to the aquatic 
insect Chironomus riparius.

Tebufenozide: Tebufenozide is a diacylhydrazine moult-inducing 
insecticide that has been developed for the control of larval 
lepidopteran pests in agriculture including forest and fruit-crops [57]. 
This compound is a non-steroidal ecdysone agonist that mimics natural 

moulting hormones, which contain, mainly, 20-OH ecdysone in larval 
insect. Insecticidal activity of Tebufenozide is shown by inducing 
premature and incomplete larval moult [57].

According to research, Hahn et al. [58] was the first work to report 
No-observed-effect concentration (NOEC) and lowest-observed-
effect concentration (LOEC) values of 13.2 and 17.2 μg/L, respectively, 
for Chironomus riparius during a 24 day toxicity test after static 
contamination of first instar larvae with tebufenozide. A semistatic 
exposure of fourth-instar larvae was also performed, revealing a lower 
susceptibility of elder larvae (NOEC 30 μg/L, LOEC 60 μg/L and LC50 
81.94 μg/L). In the semistatic exposure, pupa mortality was twice as 
high in males as in females during the 100 μg/L treatment. This sex-
related difference probably resulted from the endocrine activity of 
Tebufenozide. One year later, Hahn et al. [36], tested vitellogenesis 
as a marker for possible effects of endocrine-disrupting agents using 
concentrations that are environmentally relevant. Tebufenozide did 
not affect the yolk protein content after a semistatic exposure of 10 μg/L 
but it reduced the yolk protein content of males at 80 μg/L.

Reproduction is also an endpoint, as suggested by the OECD 
guideline [59]. This is important, considering the role that reproduction 
plays as the main process linking the individual to the population. 
Tassou and Schulz [60] were the first to demonstrate that the exposure 
to environmentally relevant sub-lethal concentrations of Tebufenozide 
affected developmental and reproductive processes of Chironomus 
riparius. Their results indicated a reduction in reproduction and 
emphasised the importance of considering reproduction as an endpoint 
for the detection of EDCs.

Tributyltin: Tributyltin (TBT) belongs to the organotin compounds 
or stannanes, used for disinfection, antifouling and preservation in 
industrial processes. Due to its toxic, persistent, bioaccumulative and 
endocrine disruptive activity, TBT is included in the EU list of priority 
compounds in water [61].

A laboratory study of Hahn and Schulz [62] resulted in sex-specific 
effects of TBT on molting hormone biosynthesis and imaginal disc 
development of Chironomus riparius. Ecdysteroid synthesis decreased 
significantly in female larvae at all concentrations (50, 500 and 5000 
ng TBT as Sn/l), whereas a significant increase of biosynthesis rate 
occurred in male larvae in the 500 ng/l treatment. In vivo experiments 
with development of the genital imaginal disc within a 48 h exposure 
period revealed a significantly slower development in female larvae and 
a significantly faster development in male larvae at all concentrations 
tested (10, 50, 200 and 1000 ng TBT as Sn/l). 

In the same year, Martinez-Paz et al. [42] and Morales et al. [63] 
demonstrated that TBT had the highest values of DNA breakage at 
the lowest concentration (0.1 ng/L) when compared to other organic 
pollutants. Morales et al. [63] also showed that TBT can induce a 
significant overexpression of the EcR gene, the ultraspiracle (usp) gene 
and the ecdysone-inducible E74 gene, all key ecdysone-responsive 
genes, as well as of the oestrogen-related receptor gene (ERR), i.e., TBT 
it is capable of activate hormonal nuclear receptor and early-responsive 
genes as within only 24 h of exposure at environmentally relevant 
concentrations.

Triclosan: Triclosan (TCS), a halogenated phenol, is a non-ionic, 
broad spectrum antimicrobial. The hormonal activity of TCS has been 
demonstrated by its capability of modulating thyroid hormone-related 
genes and anuran development [64] and it has endocrine disruptive 
effects in fishes [65]. 
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Martinez-Paz et al. [42] provided the first evidence of TCS’ potential 
genotoxic damage because of DNA fragmentation in freshwater 
invertebrates, through comet assay on Chironomus riparius. TCS also 
increases the expression of hsp27 gene at high concentrations of 1000 
μg/L in this species [52].

17α-ethinylestradiol: 17α-ethinylestradiol (EE2) is a synthetic 
steroid that has become one of the most commonly used active 
ingredients for oral birth-control contraception [65].

In a two-generation experiment using Chironomus riparius and 
EE2, Watts et al. [37] could demonstrate that emergence times and the 
percentage of adult emergence were affected. These effects were mainly 
associated with the second generation of test animals. At very low 
concentrations (1.0 ng/L) of EE2, both the first and second generation 
of adults emerged significantly earlier than control animals. 

Watts et al. [38] exposed Chironomus riparius larvae to sub 
lethal concentrations of EE2 (10 ng/l–1.0 mg/L). Molting was delayed 
and larval wet weight significantly reduced at the highest treatment 
concentration (1.0 mg/L). However, in contrast to Meregalli and 
Ollevier [66] deformities in the mentum of mouthparts were observed 
at low exposure concentrations (10 ng/L–10 μg/L).

Conclusion
The aim of this review was to help to understand how the large 

occurrence and the vast sources of EDC’s could affect the species 
Chironomus riparius by analysing different endpoints. Since this species 
plays an important role in the food chains of aquatic communities, 
representing a major link between producers and secondary consumers 
[67], the study of the effects of these xenobiotics can bring some 
evidences about the populations’ and communities’ future.

Although Chironomus riparius provides an excellent model 
to address some fundamental questions regarding the endocrine 
disrupting compounds’ effects in aquatic communities, a scarce 
number of research papers have been published about the potential 
endocrine disruption in this insect since the beginning of the century. 
During our initial research, only eight papers, on the effects of 
endocrine disrupting compounds on Chironomus riparius, were found, 
representing, therefore, less than 1% of those listed in the NORMAN 
network database. 

Most of the EDCs studied did cause an effect at ecological relevant 
concentrations to C. riparius and some had effects on the following 
generations. These bioaccumulated EDCs inherited from the mother 
not only influence the morphological and physiological development 
of the offspring but also the offspring’s’ reproductive behavior as adults 
and, in consequence, this adult behavior can have further consequences 
on the sexual development of their own young [68]. 

Understanding the response to EDCs means identifying the action 
mechanism in the endocrine system of these organisms and relating 
them to the alterations observed in the endpoints studied. Therefore, 
future research on endocrine effects in aquatic insects, using a variety 
of different endpoints at different life stages of a species, and validation 
of hazard/risk assessment procedures could enable better future 
protection of these ecologically essential invertebrates.
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